STUDY OF THE MORPHOLOGY AND THERMOSTABILITY OF POLYAMPHOLYTE PRODUCED ON THE BASIS OF AMINOACETIC ACID IMMOBILIZATION IN EPOXY MATRIX

Main Article Content

Umirova Gulnora Abdurakhmonovna
Turaev Khayit Khudainazarovich
Djalilov Abdulakhat Turapovich
Kasimov Sherzod Abduzairovich

Abstract

The purpose of this study is the synthesis and study of a covalently immobilized chelate-forming ligand for the extraction of non-ferrous and noble metal ions. To achieve this goal, a nitrogen-containing immobilized ligand based on aminoacetic acid, epoxy resin, and polyethylene polyamine was synthesized and studied. The article studies the thermal stability and surface morphology of an immobilized ligand obtained on the basis of covalent fixation of aminoacetic acid on an epoxy matrix. As a result of thermal studies, it was found that the resulting ligand is stable up to 195°C. The microscopic structure and elemental analysis of the ligand and its coordination compound with Cu2+ ions were studied using a scanning electron microscope. The microstructure of the surface of the obtained ligand was measured at the level of 100 μm; it was found that it is porous and has high sorption properties.

Article Details

How to Cite
Umirova Gulnora Abdurakhmonovna, Turaev Khayit Khudainazarovich, Djalilov Abdulakhat Turapovich, & Kasimov Sherzod Abduzairovich. (2022). STUDY OF THE MORPHOLOGY AND THERMOSTABILITY OF POLYAMPHOLYTE PRODUCED ON THE BASIS OF AMINOACETIC ACID IMMOBILIZATION IN EPOXY MATRIX. Galaxy International Interdisciplinary Research Journal, 10(9), 141–147. Retrieved from https://internationaljournals.co.in/index.php/giirj/article/view/2496
Section
Articles

References

Ismoilova Kh.M., Bekchanov D.Zh., Khasanov Sh.B., Matmuradova F.K.Sorption of Zn(II) and Cr(III) ions on anion exchangers and polyampholytes obtained from local raw materials. // Universum: Chemistry and biology: electron. scientific magazine -2019. -№12(66). P 37-45. URL: http://7universum.com/ru/nature/archive/item/8379 (in Russian).

Umirova G.A., Kasimov Sh.A., Turaev Kh.Kh., Dzhalilov A.T. IR spectroscopic and thermal characteristics of a nitrogen-containing ligand and its coordination compounds with copper (II). Philadelphia, USA, ISJTAS. Year: 2021 P. 49-51.Issue: 09 Volume: 101, DOI: 10.15863/TAS (in Russian).

Umirova G.A., Kasimov Sh.A., Turaev Kh.Kh., Dzhalilov A.T., Sorption of Cu (II) and Zn (II) ions on polyampholytes obtained from amino acids. // Universum: Chemistry and biology :electron. scientific.jоurn. -2021-№10(88). P. 19-22. DOI: 10.32743/UniChem.2021.88. URL: http://7universum.com/ru/nature/archive/item/7400 (in Russian).

Ivanchenko A. et al. Outlook of using the adsorption method for extraction of metals from hydrous effluent // грааль науки. 2021. P. 149-152. DOI: 10.36074/grail-of-science.24.09.2021.

M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem. 4 (2011) P. 361–377, https://doi.org/10.1016/j. arabjc.2010.07.019.

Ihsanullah, A.M. Abbas, T. Al-Amer, M.J. Laoui, M.S. Al-Marri, M. Nasser, M. A. Khraisheh, Atieh, Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications, Sep. Purif. Technol. 157 (2016) P. 141–161, https://doi.org/10.1016/j.seppur.2015.11.039.

Bilal M. et al. Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review // Sep. Purif. Technol. Elsevier B.V., 2022. Vol. 278, № August 2021. P. 1-10. DOI:10.1016/j.seppur.2021.119510

B. Lam, S. Deґon, N. Morin-Crini, G. Crini, P. Fievet, Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances, J. Clean. Prod. 171 (2018) P. 927–933, https:// doi.org/10.1016/j.jclepro.2017.10.090.

Y. Sun, S. Zhou, S.Y. Pan, S. Zhu, Y. Yu, H. Zheng, Performance evaluation and optimization of flocculation process for removing heavy metal, Chem. Eng. J. 385 (2020) P 1-11., 123911, https://doi.org/10.1016/j.cej.2019.123911.

Demirbas, Heavy metal adsorption onto agro-based waste materials: a review, J. Hazard. Mater. 157 (2008) P.220–229, https://doi.org/10.1016/j. jhazmat.2008.01.024.

P. SenthilKumar, S. Ramalingam, V. Sathyaselvabala, S.D. Kirupha, S. Sivanesan, Removal of copper(II) ions from aqueous solution by adsorption using cashew nut shell, Desalination. 266 (2011) P. 63–71, https://doi.org/10.1016/j. desal.2010.08.003.

M. Agarwal, K. Singh, Heavy metal removal from wastewater using various adsorbents: a review, J. Water Reuse Desalin. 7 (2017) P. 387–419, https://doi.org/ 10.2166/wrd.2016.104.

Dąbrowski, Z. Hubicki, P. Podkoґscielny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere. 56 (2004) P. 91–106, https://doi.org/10.1016/j. chemosphere.2004.03.006.

N. Abdullah, N. Yusof, W.J. Lau, J. Jaafar, A.F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, J. Ind. Eng. Chem. 76 (2019) P. 17–38, https://doi.org/10.1016/j.jiec.2019.03.029.

Maher, M. Sadeghi, A. Moheb, Heavy metal elimination from drinking water using nano filtration membrane technology and process optimization using response surface methodology, Desalination. 352 (2014) P. 166–173, https://doi. org/10.1016/j.desal.2014.08.023.

K.Y. Foo, B.H. Hameed, An overview of landfill leachate treatment via activated carbon adsorption process, J. Hazard. Mater. (2009) P. 54-60, doi:10.1016/j.jhazmat. 2009.06.038.

L. Nouri, I. Ghodbane, O. Hamdaoui, M. Chiha, Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran, J. Hazard. Mater. 149 (2007) P. 115–125. DOI:10.1016/j.jhazmat.2007.03.055

Keno David Kowanga, Erastus Gatebe, Godfrey Omare Mauti, Eliakim Mbaka Mauti Kinetic, sorption isotherms,pseudo-first-order model and pseudo-second-order model studies of Cu(II) and Pb(II) using defatted Moringaoleifera seed powder //The Journal of Phytopharmacology - 2016; 5(2). – Р.71-78. DOI:10.31254/phyto.2016.5206.

Dąbrowski, Z. Hubicki, P. Podkoґscielny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere. 56 (2004) P. 91–106, https://doi.org/10.1016/j. chemosphere.2004.03.006.

Jachuła J., Kołodyńska D., Hubicki Z. Sorption of Cu(II) and Ni(II) ions in the presence of the methylglycinediacetic acid by microporous ion exchangers and sorbents from aqueous solutions // Cent. Eur. J. Chem. 2011. Vol. 9, № 1. P.52-65 DOI:10.2478/s11532-010-0115-y

Kapur M., Mondal M.K. Competitive sorption of Cu(II) and Ni(II) ions from aqueous solutions: Kinetics, thermodynamics and desorption studies // J. Taiwan Inst. Chem. Eng. Elsevier, 2014. Vol. 45, № 4. P. 1803–1813. DOI:10.1016/J.JTICE.2014.02.022

Kasimov Sh.A., Turaev Kh.Kh., Jalilov A.T. Study of the process of complex formation of ions of some divalent 3d-metals with a synthesized chelating sorbent // Universum: Chemistry and biology: electronic scientific journal No. 3 (45) 2018 P. 17-19. URL: https://7universum.com/ru/nature/archive/category/3-45 ( in Russian)

Kasimov Sh.A., Turaev Kh.Kh., Jalilov A.T., Chorieva N.B., Amonova N.D. IR spectroscopic study and quantum chemical characterization of nitrogen and phosphorus-containing polymeric ligand. // Universum: Chemistry and biology: electronic scientific journal No. 6(60). 2019. C. 50-54. URL: http://7universum.com/ru/nature/archive/item/7400 ( in Russian)

Berdiyeva M.I., Turobzhonov S.M., Nazirova R.A. The use of polycondensation sulfocationite in of softening industrial waters. Voda: khimiya i ekologiya, 2016, no. 9, P. 27-29. URL: http://i.uran.ru ( in Russian)

Umirova G.A., Kasimov Sh.A., Turaev Kh.Kh., Sharipov B.Sh. Study of the physicochemical properties of the synthesized complexing anion exchange resin. Academic Research in Educational Sciences (ARES)12/2021. P. 1372-1379. DOI: 10.24412/2181-1385-2021-12. URL: https://www.ares.uz. ( in Russian)

Umirova G.A., Kasimov Sh.A., Turaev Kh.Kh., Jalilov A.T., Synthesis and study of chelating sorbents based on amino acids.// Uzbek chemical journal. 5/2021.P.11-17. URL: https://www.uzchemj.uz. ( in Russian).

Most read articles by the same author(s)