GLEASON'S THEOREM FOR VECTOR-VALUED MEASURES ON PROJECTORS JBW-ALGEBRAS
Main Article Content
Abstract
Let JBW algebra [1,2,3] with no direct summand of type ,and let be its lattice of idempotents from and be a Banach space. In this paper, we prove that any finitely additive vector-valued measure has a unique extension to a bounded linear operator mapping to .
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Shultz F.M. On normed Jordan algebras which are Banach dual spaces. J. Functional Analysis, 1979, vol. 31, №3, p. 360-376.
Сарымсаков Т.А., Аюпов Ш.А., Хаджиев ДЖ., Чилин В.И. Упорядоченные алгебры. Ташкент. “ФАН” , 1983.
Аюпов Ш.А. Классификация и представление упорядоченных йордановых алгебр. Ташкент. “ФАН”, 1986.
L. J. Bunce and J. D. M. Wright, The Mackey-Gleason problem. Bulletin (New Series) of the Amer. Math. Soc. 1992, vol. 26, № 2, p. 288-293.
L. J. Bunce and J. D. M. Wright, Continuity and linear extensions of quantum measures on Jordan operator algebras, Math. Scand. 64 (1989), 300-306). MR1037464 (91f:46096)
Topping D. Jordan algebras of self-adjoint operators. Mem. Amer. Math. Soc. 1965, № 53, p. 1-48.
Ayupov Sh.A., Extensionof traces and type criterions for Jordan algebras of self-adjoint operators. Math.Z., 1982, Vol.181.P. 253-268.
Topping D. An isomorphism invariant for spin factors. J. Math.Mech., 1966, vol.15, p. 1055-1064.