THERMAL COMPUTER MODEL OF TM-160/10 POWER TRANSFORMER

Authors

  • Khakimov Zafar Tulyaganovich D. in Engineering, Acting Professor, Yangiyer Branch of Tashkent Chemical and Technological Institute, 1 Tinchlik Street, Yangiyer, Uzbekistan
  • Olimbayev Otajon Azamat o’g’li Student of the Yangiyer branch of the Tashkent Chemical Technology Institute, 1 Tinchlik Street, Yangiyer, Uzbekistan
  • O’ng’arov Sardor Alisher O’g’li Student of the Yangiyer branch of the Tashkent Chemical Technology Institute, 1 Tinchlik Street, Yangiyer, Uzbekistan
  • Omonboyev Kamol Dilmurod o’g’li Student of the Yangiyer branch of the Tashkent Chemical Technology Institute, 1 Tinchlik Street, Yangiyer, Uzbekistan
  • O’ngarov Sardorbek Tursunboy o’g’li Student of the Yangiyer branch of the Tashkent Chemical Technology Institute, 1 Tinchlik Street, Yangiyer, Uzbekistan

Keywords:

power transformer, dry and oil-filled, heat fluxes

Abstract

Simulation results of thermal characteristics of dry-type and oil-filled power transformer TM-160/10 in no-load and short-circuit modes are presented. Electrical, geometrical and thermal characteristics of TM-160/10 transformer have been determined. Computer modeling was performed in ANSYS17.1 software package. 2D distributions of temperature and heat flux density in transformer in longitudinal and transverse sections were determined. It is shown that the use of transformer oil for transformer cooling significantly reduces temperatures in the active part. The temperature distribution occupies the range of 67-91 °С. Accordingly, the temperature of the most heated part is 91 °С and also corresponds to the low voltage winding. The dependence of the most heated point of the transformer on the operating mode has been studied. A formula for calculation of maximum transformer temperature depending on power loss has been proposed.

References

Встовский А.Л., Встовский С.А., Силин Л.Ф. Проектирование трансформаторов. Красноярск: Изд-во Сиб. федер. ун-та, 2013. 120 с.

Расчет силового трансформатора [Электронный ресурс]. URL: http://leg.co.ua/transformatori/teoriya/raschet-silovogo-transformatora.

html (дата обращения: 17.09.2018).

Проектирование силовых трансформаторов с использованием методов оптимизации / Ю.А. Арутюнов [и др.] // Омский научный вестник. Электротехника. Энергетика. 2017. № 6 (156). С. 47–53.

Thamir M. Abdul Wahhab, Methaq Talib Jabbar. Design and Simulation of 11/0.4 kV Distribution Transformer Using ANSYS // Eng. & Tech. Journal. 2014. Vol. 32, Pt. A, # 2. Pp. 414–438.

Constantin D., Nicolae P.M. and Nitu C.M. 3D Finite Element Analysis of a three phase power transformer [Электронный ресурс] // Eurocon 2013. Zagreb, 2013. (DOI: 10.1109/EUROCON.2013.6625184).

CFD Analysis of Heat Transfer Performance of Nanofluids in

Distributor Transformer / Rajashekhar Pendyala [et al.] // 4th International

Conference on Process Engineering and Advanced Materials Procedia Engineering. 2016. 148. Pp. 1162–1169.

Системы охлаждения силовых трансформаторов [Электронный ресурс]. URL: http://www.gigavat.com/transformator_sistemi_ ohlazhdeniya.php (дата обращения: 17.09.2018).

Rupert Gouws. Design of a Controlled Cooling System for a ThreePhase Power Transformer With Support of Renewable Energy [Электронный ресурс]. URL: https://www.researchgate.net/publication/305527083 (дата обращения: 17.09.2018).

Mohammadali Salari, Pascal Bayrasy, Klaus Wolf. Thermal analysis of a three phase transformer with coupled simulation [Электронный ресурс]. URL: https://www.researchgate.net/publication/276057920 (дата обращения: 17.09.2018).

Моделирование процессов теплообменасредствами пакета конечно-элементного анализа ANSYS [Электронный ресурс]. URL: http://lib.knigi-x.ru/23raznoe/126936-1.php (дата обращения: 17.09.2018).

Downloads

Published

2022-05-31

Issue

Section

Articles

Most read articles by the same author(s)