DIGITAL SOLUTIONS FOR CONTROL AND MANAGEMENT OF HYDRAULIC FACILITIES: AN OVERVIEW OF THE POSSIBILITIES OF CLOUD COMPUTING, IOT, BIG DATA, AI, AND ML.

Main Article Content

Tojiboyev Suxrob Jafarovich, Aralov G'ayrat Muhammadiyevich , Mirzayev Shoxrux

Abstract

The hydraulic facilities play a crucial role in the production and distribution of energy, water supply and sewage treatment. In the current scenario, the traditional methods of control and management of hydraulic facilities are facing certain challenges such as operational inefficiency, high maintenance costs and lack of real-time monitoring. Digital technologies offer new and innovative solutions to these problems. This paper presents a comprehensive overview of the possibilities of using digital technologies in control and management of hydraulic facilities. The study focuses on different digital technologies such as IoT, Big Data, Cloud Computing, Artificial Intelligence and Machine Learning. The article highlights the benefits and challenges of each technology and provides recommendations for their practical implementation. The findings of this study will be valuable for engineers, technicians and managers who are responsible for the operation and maintenance of hydraulic facilities.

Article Details

How to Cite
Tojiboyev Suxrob Jafarovich, Aralov G’ayrat Muhammadiyevich , Mirzayev Shoxrux. (2023). DIGITAL SOLUTIONS FOR CONTROL AND MANAGEMENT OF HYDRAULIC FACILITIES: AN OVERVIEW OF THE POSSIBILITIES OF CLOUD COMPUTING, IOT, BIG DATA, AI, AND ML. Galaxy International Interdisciplinary Research Journal, 11(2), 324–326. Retrieved from https://internationaljournals.co.in/index.php/giirj/article/view/3546
Section
Articles

References

Gao, S., Li, Q., & Wang, Y. (2018). Big data for energy systems: opportunities and challenges. Energy, 153, 195-205. https://doi.org/10.1016/j.energy.2018.06.109

Chen, Y., & He, Y. (2017). The Internet of Things in industries: A review. Journal of Industrial Information Integration, 7, 1-9.

https://doi.org/10.1016/j.jiii.2017.02.001

Neely, A. (2015). The performance frontier: Innovating for a sustainable strategy. Cambridge University Press.

Vlachogiannis, E., & Tzivras, M. (2017). Cloud computing benefits, risks and recommendations for information security. Journal of Information Security and Applications, 33, 17-24. https://doi.org/10.1016/j.jisa.2017.01.002

Singh, R., & Zomaya, A. Y. (2015). Big data analytics in cloud computing: Review and open research issues. Journal of Parallel and Distributed Computing, 75, 3-12. https://doi.org/10.1016/j.jpdc.2014.11.002

Carpio, A., & Malumbres, M. (2017). Artificial intelligence and machine learning in the energy sector. Energy Policy, 107, 483-493. https://doi.org/10.1016/j.enpol.2017.06.009 8. Islamnur, I., Ogli, F. S. U., Turaevich, S. T., & Sherobod, K. (2021, April). The importance and modern status of automation of the fuel burning process in gas burning furnaces. In Archive of Conferences (Vol. 19, No. 1, pp. 23-25). 9. Islamnur, I., Murodjon, O., Sherobod, K., & Dilshod, E. (2021, April). Mathematical account of an independent adjuster operator in accordance with unlimited logical principles of automatic pressure control system in the oven working zone. In Archive of Conferences (Vol. 20, No. 1, pp. 85-89).

Gulyamov S. M., Mirzayev S. N., Xamidov O. R. INTELLEKTUAL BOSHQARUV TIZIMINING NOANIQ MANTIQ METODIKAGA ASOSLANGAN FAZZIFIKATSIYA VA DEFAZZIFAKATSIYA ALGORITMINI TUZISH //Инновационные подходы, проблемы, предложения и решения в науке и образовании. – 2022. – Т. 1. – №. 1. – С. 75-78.

Каландаров, П. И., & Аралов, Г. М. (2021). Инвестиционная привлекательность–успешная реализация инновационных разработок, работающих в режиме реального времени. Инновацион технологиялар, (2 (42)), 88-91.

Каландаров, П. И., Макаров, А. М., & Аралов, Г. М. (2021). Особенности автоматизированного измерения влажности зерновых культур в полевых условиях. Известия Волгоградского государственного технического университета, (1), 60-63.

Аралов, Ғ. М. (2022). ИШЛАБ ЧИҚАРИШДА ЕНГИЛ САНОАТИНИНГ КЛАСТЕР УСУЛИ ИННОВАЦИОН ИҚТИСОДИЁТНИНГ АСОСИЙ ЙЎНАЛИШИ СИФАТИ. Educational Research in Universal Sciences, 1(6), 138-142.

Mallayev, A., Sevinov, J., Xusanov, S., & Boborayimov, O. (2022, June). Algorithms for the synthesis of gradient controllers in a nonlinear control system. In AIP Conference Proceedings (Vol. 2467, No. 1, p. 030003). AIP Publishing LLC.