RAPID ASSIMILATION OF THE DECISION TREE LEARNING ALGORITHM
Main Article Content
Abstract
We know that it will take a very long time to learn for a decision tree, and to solve this problem, we offer several ways of learning that will not take much time.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Classification and Regression Trees / L. Breiman, J. H. Friedman, R. A. Olshen, C.T. Stone // Wadsworth. Belmont. California. 1984.
Mitrofanov S. A. Primenenie neyroevolyucionnogo podxoda pri reshenii zadach klassifikacii // Reshetnevskie chteniya: Materials of the XXI International Scientific Conference (November 11-14, 2014, Krasnoyarsk) : at 3 o'clock / under the general editorship of Yu. Yu. Loginov; SibGU named after M. F. Reshetnev. Krasnoyarsk, 2017. No. 2 (21). pp. 226-227.
Kushnareva T. V., Lipinsky L. V. Algoritm geneticheskogo programmirovaniya dlya avtomatizirovannogo formirovaniya derevyev prinyatiya resheniya // Reshetnevskie chteniya : Materials of the XVIII International Scientific Conference (November 11-14, 2014, Krasnoyarsk) : at 3 o'clock / under the general editorship of Yu. Yu. Loginov ; Sib. gos. aerospace. un-T. Krasnoyarsk, 2014. No. 1 (18). pp. 84-86