

BASICS OF TEACHING DISK DRIVING TECHNIQUE

Azizov Mukhammadjan Azamovich

Kokand State University, Uzbekistan

ABSTRACT

This article covers the techniques of discus throw training and the methods of training it, which occupy an important place within the throwing types of athletics. The physical and technical training of the athlete's body, the phases of movement (preparatory posture, rotation, throwing and restoring balance) and the methodology for their gradual training are analyzed.

Keywords: Athletics, discuss throw, technique, physical fitness, circle, circuit, speed, meter, sport, athlete, balance, turn.

INTRODUCTION

Discus throw is one of the throwing types of athletics, and an athlete throws a disc made of metal or plastic as far as possible. In sports, the goal of throwing is to throw the disc further, following certain rules that limit the movement of the thrower.

Throwing is a cyclic exercise that requires great neuromuscular strength and good physical fitness from the thrower. Without this, high sports results cannot be achieved. Throwing is a cyclic exercise that requires great neuromuscular strength and good physical fitness from the thrower. Without this, high sports results cannot be achieved. Throwing is a cyclic exercise that requires great neuromuscular strength and good physical fitness from the thrower. Without this, high sports.

It is also possible to throw the disc from where it is standing, but only when the circle is standing and thrown can it be achieved to fly much further. Compared to throwing from where you stand when you turn and throw, the speed of flight of the disc is 20 meters per second and even more, and the disc can fall 5-8 m further. It is also possible to throw the disc from where it is standing, but only when the circle is standing and thrown can it be achieved to fly much further. Compared to throwing from where you stand when you turn and throw, the speed of flight of the disc is 20 meters per second and even more, and the disc can fall 5-8 m further. Modern throwers start the spin by standing upside down on the throw side and rotate 540° (1.5 circles) until the disc is pushed out of hand. The thrower's making of a circle coincides with the general action of the aspirant towards the thrower's side. The thrower goes through the following phases as it rotates from the initial position during the rotation: the initial double-base phase, the left-foot single-base phase, the base-free (after depressing with the left foot) phase, the right-foot single-base (starting at the time of placing the foot on the ground) phase, and the closing double-base phase. The fact that the disk flies forming the most favorable angle largely depends on the speed and direction of the wind. The thrower goes through the following phases as it rotates from the initial position during the rotation: the initial double-base phase, the left-foot single-base phase, the base-free (after depressing with the left foot) phase, the right-foot single-base (starting at the time of placing the foot on the ground) phase, and the closing double-base phase. The fact that the disk flies forming the most favorable angle largely depends on the speed and direction of the wind. For example, the most

favorable angle for a disc to fly in calm air is approximately 33-36°. When thrown against the wind, however, the favorable angle decreases as the wind speed increases. Flying is more common when thrown in the direction of the wind. When throwing a disc against a wind speed of 4-5 meters per second, it can be taken out of the hand correctly, the thrower can achieve a better result than in any direction of the wind or in quiet conditions.

Capture the projectile. The projectile should rest on the nail joint on the bent fingers, except for the thumb of the lowered hand. The thumb only touches the surface of the disc. In this case, the paw is slightly bent at the palm-wrist joint, and the upper part of the disc flange touches the wrist. Capture the projectile. The projectile should rest on the nail joint on the bent fingers, except for the thumb of the lowered hand. The thumb only touches the surface of the disc. In this case, the paw is slightly bent at the palm-wrist joint, and the upper part of the disc flange touches the wrist. The fingers should not be close to each other, nor should they be written in a tense way, since in either case it becomes difficult to control the disc to prepare for rotation. In the initial position for rotation, the thrower stands at the back of the circle: the legs open shoulder-width apart or slightly wider. The position of the throwing body in relation to the throwing side may have some difference. More convenient is to turn your back on the side of the throw. From such a position, it is much more difficult to turn compared to standing with the side, but in such a situation, the path of movement that the thrower does in conjunction with the disc lengthens, which means that when starting a rotation (in the base Phase), better conditions are created to increase the amount of movement. The position of the throwing body in relation to the throwing side may have some difference. More convenient is to turn your back on the side of the throw. From such a position, it is much more difficult to turn compared to standing with the side, but in such a situation, the path of movement that the thrower does in conjunction with the disc lengthens, which means that when starting a rotation (in the base Phase), better conditions are created to increase the amount of movement. In the initial position, the right leg is very attached to the edge of the circle, to the flange. When starting the initial shake or swinging the hand holding the disc to the right, the old-left foot is placed shoulder-width apart, even wider. The legs are located at the same distance from the diameter, which is assumed to be directed to the throwing side of the circle.

At the time of preparation for throwing, the torso stands almost upright, the legs are slightly bent. While the thrower is preparing for a spin, the disc will shake the hand it holds right-back, the initial eraser-teeth will help with this. At the time of the shake, the right hand holding the disc is first taken to the left in conjunction with a slight tilt of the torso, with the weight of the torso being slightly transferred to the left leg. At the time of preparation for throwing, the torso stands almost upright, the legs are slightly bent. While the thrower is preparing for a spin, the disc will shake the hand it holds right-back, the initial eraser-teeth will help with this. At the time of the shake, the right hand holding the disc is first taken to the left in conjunction with a slight tilt of the torso, with the weight of the torso being slightly transferred to the left leg. The arm is then shaken and carried to the right, with the body weight transferred to the right leg. At this point, the right leg is retracted to the ground with the heel and the left leg with the front. The disc should not be raised above the shoulder joint when shaken. A hand-to-right swing is performed in conjunction with a free turn of shoulder

width, and as a result, the body of the thrower must be turned at the end of the shake, carefully maintaining balance. Taking into account these, the capture of projectiles is carried out.

When performed in a circular shape, the thrower increases the linear velocity of the projectile. When performed in a circular shape, the thrower increases the linear velocity of the projectile. At this time, the centrifugal force will go much as the rectilinear velocity of that velocity increases, making it difficult for the thrower to move.

The amount of force the thrower expends is equal to the product of the linear velocity square of the projectile mass, the ratio of the radius of rotation. The amount of force the thrower expends is equal to the product of the linear velocity square of the projectile mass, the ratio of the radius of rotation. Running with rotation occurs again along a line of the amount of force the thrower expends is equal to the product of the linear velocity square of the projectile mass, the ratio of the radius of rotation. Running with rotation occurs again along a line of motion to the arc point at the point where the effect of the pulling force that moves towards the center of the projectile on the projectile is complete. During circular running, the radius of rotation of the projectile depends on the length, that is, the distance from the axis of rotation of the system consisting of a projectile with a thrower to the center of gravity of the projectile. During rotation, the speed of the thrower may increase, the radius of rotation of the projectile (disc) may decrease, and the speed of movement of the projectile may decrease.

The backward shift of the mass of the thrower moving with the projectile, the sharpening of the last voltage from the front, negatively affects the distance of the throw. The backward shift of the mass of the thrower moving with the projectile, the sharpening of the last voltage from the front, negatively affects the distance of the throw. In this case, the rate at which the projectile will fly out the backward shift of the mass of the thrower moving with the projectile, the sharp backward shift of the mass of the thrower moving with the projectile, the sharpening of the last voltage from the front, negatively affects the distance of the throw. In this case, the rate at which the projectile will fly out, and in combination with its launch into the distance, will also be approximately equal to that at the point of being thrown out of place. Can not achieve a high result. The last phase of preparation for the final push, the final push, and the stop. The preparation to give the last strength will be different in different throws, but in all cases it is of great importance to increase the speed of movement of the projectile at the end of the throw. At the same time, in order to perform the last power-giving, the thrower must stand in such a position that it is necessary that the position allows the last phase to be performed so that the projectile flies out at the greatest speed.

CONCLUSION

The path of the disc in giving final force must pass in an arc of a large radius. The disc is thrown as soon as the depressions of the legs end. The right leg is depressurized, raised directly from the ground before the disc is flown, and placed forward in place of the left leg. The slightly bent left leg is placed on the ground after the turn starting at the tip. The path of the disc in giving final force must pass in an arc of a large radius. The disc is thrown as soon as the depressions of the legs end. The right leg is depressurized, raised directly from the ground before the disc is flown, and placed forward in place of the left leg. The slightly bent left leg is placed on the ground after the turn starting at the tip. At first, as a result of an increase in

the pressure force on it, it is bent a little, and then, along with the right leg, it is quickly restored, carrying the weight of the torso. As a result of the rapid replacement of the legs, which is of great importance in faster depressing, the left leg rises from the ground at the same time as the disc is blown out. When throwing a disc with the right hand, due to the change in the direction of the force of impact of the thrower on the disc, the disc moves around its axis from the left to the front line.

REFERENCES

1. Arzibaev K.O. Athletics and methods of its teaching. Textbook. –T.: "University", 2021. 314 p.
2. Arzibaev K.O., Mirzaev A.M. Athletics and methods of its teaching. Textbook. – T.: "University", 2021. 248 p.
3. Yakubzhonova F. I. From pedagogical technologies in physical education lessons use. // Society and innovation, 2021. 684-687.
4. Yakubzhonov I.A., A methodology for teaching sports and action games (table tennis). Tutorial 9.25 b / t. 14.08. 2020. 418-080
5. Yakubjonova, F. I. (2021). *The Use of Pedagogical Technologies in Physical Education Classes. Society and Innovations*, pp. 684–687.
6. Azamovich, A. M. (2022). The types of jumps required in physical education and sports practice, the peculiarities of jumping and jumping endurance. International journal of social science & interdisciplinary research issn: 2277-3630 Impact factor: 7.429, 11(11), 324-326.
7. Yakubzhonov, I., M. Azizov, and F. Yakubzhonov. "Development of physical fitness and sports in the formation of a healthy young generation." Educational Research in Universal Sciences 1.3 (2022): 170-173.