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Consider a three-layer structure consisting of a bar or a beam (Figure .1). Let the structure be
infinite on both sides. Let the member material be elastic. Suppose that the bending of the
structure occurs in the plane xy. If the problem of plane deformation of the plate is considered,

then the Poisson ratio V is equal to vid-v) The forces in the plane xy are, as presented in
the second chapter, as follows:

w92, 0% o 09 Ov

oX oy B oy oX , (1)

Then A we get the wave equation (2.13) with complex coefficients for the displacement

potentials
2 . e
Gy (Ui, Vo= p 2F,
oy
G,(1-iT )Vzt// p—.
o’ (2)
In this case GO, the instantaneous shear modulus, is the density of £ the material,
‘= 6_2+8_2 © ) © (s)
= (e S - ml (4 S
ooy’ is the Laplace operator, Ty =0 @)+ T (@), Ty = =0 (00) + T, (@7) . In this

case, the voltage component will be as followsi
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The solution of this equation (3.2) is sought as follows

¢ = CD(Xl y)em)t W= \P(Xv y)em)t , (4)

where POGY)P(XY) = are the amplitudes of the longitudinal and transverse displacement
potentials ® and are the complex frequency. If we substitute the solution (4) into (2), we get
the following equations

VIO +h'®=0, V¥ +k¥ =0, (55

o Vg by P o

herein 2G,(L-iT,,) G, (1-iT',)
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Consider the solution of equation (3.5) above. Equations (1)-(5) are relevant for a three-layer
plate. We build a structure that is symmetrical with respect to the middle plate. Let the two
outer plates be identical.
®, =B, sha,ysinéx, ¥, =D,chfycoséx,
®, =[Acha,(c-Y)+B,sha,(c-y)]sinéx,
=-[C,shp,(c—y)+D,chp,(c—y)lcoséx, ©)
at =g b =
Based on (1), we obtain the analytical expression of displacements
u, = (B,Esha,y + D, 5, shg,y) cos Exel,
9 = (B, chay + D, Ech B, y)sin £x e’
U, = (A,Echa, (¢ — y) + B,Esha, (c — y) +
+C,B,ch3,(c — y) + D, 3,53, (c — y)) cos Exe',
% =—(A,a,sha, (c —y) +B,a,cha,(c—y) +
+C,&sh /3, (¢ — y) + D,Ech B, (¢ — y)) sin Ex e )
The outer surfaces of the structure under study are freed from stresses.

y:iH’O-y,Zzo-xy,ZZO' (8)

If we substitute (8) for condition (7), we get an algebraic equation
A2(§2+1322)+2C2§,32=01282§ﬁ2+D2(§2+1322)=0- (9)

In addition, the condition of continuity at the point of contact between the plate and the filler
must be met.

herein

y:iHl,O' =0,,,0

y210xy1=0 U =u,, & =35.

xy,2?

(10)
If we use the above equations, we get the following system of equations for finding unknown
integral constants:
B,SshaH, + D, g shgH, =
2 2
= A (fehayH, — =P an g H) +

2&a, 3,
+B,(Esha,H, —25%222 shp H,
(&s s s )

B,a,.cha,H, + D, chpg H, =

— A §2+ﬂ22
=A(—a,sha,H, + Y. shg,H,) +

2

25°ex
+B, (—a,cha,H, +(§C§ ,822 chp,H,),

Bl(f2 +/812)S halHl + 2D1§ﬂls hﬂlHl =

_ %[Az(fz + f2)cha, H, —chg,H, )+

+B G (&7 + s, ——45 Tl SnH,),

2B, fa,cha,H, + D, (&% + p2)chpH, =
_ 02 [A, (—2&a,sha,H, +Mshﬂ2H2)+
Go, 285,
+2B,&a, (cha,H, +chB,H ). (11

It is a system of four unknown homogeneous algebraic equations with complex coefficients
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(BuDuAuBy 1 order for this system of equations to have a non-zero solution, its main
determinant must be equal to zero. From this condition, we obtain the dispersion relation or
frequency equation.

Frequency equation. The ratios given in (5) above can be written as follows

2 A-v)p WP k2 = Py 2

= - 1 = : @
2601(1_|r/1,11) G01(1_|Fy1)
of =&°-h, gl =&~

2 _ 1-v,)p, @ K2 = P e
’ 2G02 (1_ iF/l,uZ) ? Goz (1_ iFyZ)
al =& -, B =& -k}, (12)

The phase velocity for a V-bending beam is:
V=olg In this case, we will introduce labeling
G, 2G,
Vs%j__’ Ig,j_—’J
P =) (13)

The following expressions (13) express the instantaneous velocities of the longitudinal and

transverse waves. For an infinite plate, the expressions % and Ay have the following form:

aF =& 1—(\%)2}055 =& {HVL)Z},

T DY e D e
B =¢1 (VSM)},,BZ—? {1 (vso,z)}'

(14)

It can be seen that ¢ and Py can be real, Vios Vo, complex or imaginary values depending on
the values of the speeds. Therefore, we will consider the following cases:

1V, >V, >Vigr >Voos,

2.V,01 > V01 >Vigo >V,

3 Vo2 >Vie1 > V02 >Veou,

4V 51 >V, > Vo1 >V, (15)
Those who have studied the first and second of the (15) above are studied in the same way.
Let's look at the study of the first score. He's alone

a,h, = p, S, =mp, e, by =np, 4 b = qp. (16)
If we use (12) above, we get the following ratios
2-(1- Vz)m 2 2 2G,(1-m?)

(fh) - 1+v, o= o, (L+v,) (17.a)
2 _ 2‘1_(1_‘/1)q2 2 2 _ ZGM(I’]2 _qz) 2
T E T )

From the last equation (17) we obtain the following ratio
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— 1 hl {2_(1_‘/ )mZ _ Gozpl(l_vl) (1_m2)}
2 ’
1+v, h, Gy.0,

hy

- it {2—(1—v2)m2—2M(1—m2)}
1+v, h Go12,

If we simplify equation (11) and make the principal determinant equal to zero, we get the

frequency equation

Gy, 1
b (1- +ethpthmp ;-
Goz{bl( Chpchmp) thp p}

(—=n'g'thgp + £"thnp) +

GOl bl
+—= +e, + f,thpthmp ;-
Goz{chpchmp 2 T 1P p}

(-4&"n'g'thgp + (&% + ")’ thnp) +
+(b,thmp +e,thp )(£"* — q'*)q'thgp thnp +

1
1—-——)+e,thpthmp |-
+[b1( Chpchmp)+e4 p mp}

{(2n'g'thgp — (£ +q')*thnp) +
+(bithp + e;thmp)(£” ~"*)n’ =0. (19)

It includes the following definitions:

a- n(m)q q(m) & =2~ (-vm),

2

02— 2 SwPigyya-mey),
1+v, 1002

g7 = (2--v)m? 250 0y,
l+ GlOpZ

b =B+ £, =+ £ +11),
b, =—4m?E(m* + £%)% e, = m*(m® +&%)% + 4m,
f, ==[m&?(m? + &%) +4m’e” |,
b, =m(-m? +&E?)(M? + £%)% e, = —4m*E? (—-m* + £77),
b, = 4m’E™ (m? +3¢)(m’ +£7Y,
g, = —2m&*(M* + £2)° —16m°&™,
b, = m*&E? (—m? + E%)(Mm? + £7)? e, = —4mE? (M* + £7%)°. (19)
The above transcendental complex parametric equation (18) is calculated. This equation is

solved by the methods of Miiller and Gauss. Numerical results are presented in Figures 1, 2
and 3.
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Figure 1. Change of Phase Velocity in a Three-Layer Beam as a Function of Wavelength
The numerical results show a change in the real and imaginary parts of the phase velocity in
a three-layer beam with a wavelength at h2/h1 = 1/10. It can be seen that a decrease in the

h
A==
wavelength of the tube ( A ) leads to an asymptotic change in the phase velocity. The
ReV = Rev—
results are presented for two modes of phase velocity. The ordinate axis 0l and
Vv
ImV =—-Im—

s01 - (1,2 is the real part of the group velocity, 3,4 are the corresponding imaginary
parts). The dependence on the number of waves is shown in Figure 2. From the figure it can

V
ReV, =Re —-
be seen that at small values of 01 the velocity of wave propagation in the tube, the
group phase velocity is expressed by nonmonotonic functions (1.2 is the real part of the group
velocity, 3.4 is the corresponding imaginary parts).

ReV, e
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Figure 2. The change in the group velocity as a function of the wavelength in a three-layer
beam is described.
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In obtaining numerical results, the material of the first plate was adopted as aluminum, and
the second as plastic. Their characteristics are as follows:

G, = 2700kg /mm?,v, =0.34,p,g =2.7-10"°;

G,, =110kg / mm?,v, =0.36, p,,g =1.3-10°°.

Thus, the dispersion equation for the problem of wave propagation on a three-beam hammer

was derived and numerically solved. The change in group and phase velocities depending on
the wavelength 1s analyzed.
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