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ABSTRACT 

This article explores one of the fundamental problems in classical mechanics — the restricted 

three-body problem. The theoretical foundations of the problem, including Lagrange and Euler 

points, the equations of motion, and their properties, are analyzed. Furthermore, the paper 

presents a stability analysis using the Lyapunov method and numerical modeling techniques. 

Modern approaches such as artificial intelligence-based models, numerical computation 

algorithms, and their practical applications are also discussed. The findings highlight the 

significance of this complex problem in celestial mechanics, astrodynamics, and other related 

fields. 
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INTRODUCTION 

The three-body problem is one of the oldest and, at the same time, most complex problems in 

classical mechanics. This problem was initially raised in the 17th century by Isaac Newton 

within the framework of explaining the mutual interactions of bodies moving under the 

influence of gravitational forces. While the motion resulting from the mutual gravitational 

interaction of two bodies can be relatively precisely described in a closed form, the dynamics 

of a system involving three bodies turn out to be complex, nonlinear, and often unstable. 

The restricted three-body problem is a simplified version of this general problem, in which two 

primary bodies possess large interacting masses, while the third body has an insignificant 

mass that does not affect the motion of the other two but moves under their gravitational 

influence. This simplification is widely used in practice, particularly in astrodynamics, 

satellite motion calculations, and the planning of space missions. 

In recent years, the development of digital technologies has opened up new possibilities for 

modeling, simulating, and analyzing the stability of solutions to this problem. Modern 

approaches such as artificial intelligence, evolutionary algorithms, and neural networks 

provide deeper insights into the behavior of this complex dynamical system. 

In this paper, the theoretical foundations, stability analysis, and modern modeling methods of 

the restricted three-body problem (RTBP) are thoroughly examined. Initially, the 

mathematical model of the problem and its fundamental solution properties are discussed. 

Then, practical solutions are presented, including approaches to stability analysis based on 

the Lyapunov method, numerical modeling techniques, and simulations utilizing artificial 

intelligence. 
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2. Theoretical Foundations 

2.1. Definition of the Restricted Three-Body Problem 

The Restricted Three-Body Problem (RTBP) is a simplified model aimed at studying the 

motion of a third body with an extremely small mass (e.g., an artificial satellite or asteroid), 

which moves under the gravitational influence of two primary bodies (e.g., the Earth and the 

Moon, or the Sun and Jupiter), while having no effect on their motion. In this model, the mass 

of the third body is assumed to be zero, thereby eliminating its feedback influence on the 

system. 

 

2.2. Equations of Motion 

The RTBP is typically expressed in a rotating coordinate system. The two primary bodies are 

assumed to move in circular orbits around their common center of mass with a constant 

angular velocity, as in the Sun-Earth or Earth-Moon systems. The motion of the third body is 

described by the following differential equations: 

ẍ − 2y =
∂Ω

∂x

̇
 ,       ÿ + 2ẋ =

∂Ω

∂y
 ,    z̈ =

∂Ω

∂z
 

Here, Ω(x,y,z) is the effective potential energy function, which incorporates both gravitational 

and centrifugal forces: 

Ω(x, y, z) =
1

2
(x2 + y2) +

1 − μ

r1
+

μ

r2
 

Here: 

μ  is the mass ratio of the two primary bodies, defined as  μ =
m2

m1+m2
 , 

r1, r2 are the distances from the third body to the first and second primary bodies, respectively. 

 

2.3. Lagrange and Euler Points 

One of the key features of the Restricted Three-Body Problem (RTBP) is the existence of 

equilibrium points, where the motion of the third body remains relatively balanced. These 

points are classified as follows: 

Lagrange points (L1, L2, L3, L4, L5) are five equilibrium points. Three of them (L1–L3) lie along 

the straight line connecting the two primary bodies, while the other two points (L4 and L5) are 

located at the vertices of equilateral triangles, forming a 60° angle with the line joining the 

primaries along their orbital path. 

Euler points typically refer to the collinear equilibrium points L1, L2, L3 and L1, L2, L3 , which 

lie along the line connecting the two primary masses. 

 

2.4. Integral Invariant – The Jacobi Constant 

In this system, there exists a Jacobi integral that expresses the law of conservation of energy: 

∁= 2Ω(x, y, z) − (ẋ2 + ẏ2 + ż2) 

This integral plays an important role in analyzing certain behaviors of the system, such as the 

direction of motion and the regions of allowed movement. 
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3. Stability Analysis 

In the restricted three-body problem, the motion of the third body is often complex, nonlinear, 

and unstable. Therefore, analyzing the stability of motion around equilibrium points—

particularly the Lagrange points—is of great importance. This section outlines the concept of 

stability, methods of analysis, and their practical applications. 

 

3.1. Concept of Stability 

Mathematically, an equilibrium state is said to be stable if, when starting from an initial 

condition very close to it, the motion does not diverge significantly from that point. Otherwise, 

the point is considered unstable. In the restricted three-body problem, this assessment is 

typically carried out using the Lyapunov stability criterion. 

 

3.2. Linear Stability Analysis 

A linearized version of the system is obtained around the equilibrium points. In this approach, 

the equations of motion are transformed into a linear system using the Jacobian matrix, and 

are expressed in the following form: 

dx

dy
= Ax 

Here, AAA is the Jacobian matrix, and xxx is the vector of small perturbations around the 

equilibrium point. 

For the system to be stable, all eigenvalues of matrix AAA must have negative real parts. 

 

3.3. Lyapunov Method 

The Lyapunov method is used to assess stability in nonlinear systems using a Lyapunov 

function. If: 

V(x) > 0 for all x≠0 

  V′(x)≤0  then the equilibrium point is considered stable. If    V′(x)<0  then it is considered 

asymptotically stable. This method is especially useful when linearization does not provide 

conclusive results, particularly in evaluating the stability of the L4and  L5 points. 

 

3.4. Numerical Analysis 

In the assessment of stability, numerical methods are frequently employed, including the 

Runge–Kutta method, spectral analysis, and Floquet theory. For instance: 

The points L1, L2, L3, and  are generally unstable. 

The points L4 and L5, however, are stable if the mass ratio of the two primary bodies satisfies 

a certain condition: 
m1

m2
> 24.96  

This condition is satisfied, for example, in the Sun–Jupiter system, which is why the Trojan 

asteroids exhibit stable motion around the L4 and L5 points. 

 

4. Modern Modeling Approaches 

In recent years, the development of computational technologies and artificial intelligence has 

significantly expanded the possibilities for studying the restricted three-body problem. 
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Numerical modeling not only allows for the analysis of scenarios where analytical solutions 

are not available, but also enables accurate prediction of complex orbital motions. 

 

4.1. Numerical Modeling Methods 

In numerical simulations, the motion of the third body is typically discretized over time, and 

the differential equations are solved using the following methods: 

Euler and Runge–Kutta methods: Classical approaches most commonly used due to their high 

accuracy. 

Adaptive step-size algorithms: Employed for modeling complex orbital behavior, especially 

near close approaches or potential collisions. 

Simpson and trapezoidal methods: Integration techniques that ensure energy conservation. 

Through these methods, it is possible to accurately evaluate orbital trajectories, velocities, and 

energy variations over time. 

 

4.2. Software Tools 

Today, the following software platforms are widely used for modeling the restricted three-body 

problem: 

MATLAB/Simulink: Offers a user-friendly interface and powerful graphical capabilities. 

Convenient for working with Runge–Kutta and other integration methods. 

Python (SciPy, NumPy, Matplotlib): Open-source tools that allow for the development of 

flexible and customizable models. 

Mathematica: Integrates symbolic and numerical computation in a unified environment. 

GMAT (NASA General Mission Analysis Tool): Used for mission planning and analysis in 

space exploration. 

 

4.3. Artificial Intelligence and Machine Learning 

In recent times, modeling approaches based on artificial intelligence have seen rapid 

advancement: 

Neural Networks: Applied for trajectory prediction, anomaly detection, and orbital 

optimization. 

Genetic Algorithms and Evolutionary Computation: Utilized in problems such as identifying 

optimal initial conditions and minimizing collision risks. 

Reinforcement Learning: Used to develop autonomous control strategies for spacecraft 

operations and mission planning. 

 

4.4. Practical Applications 

Models developed based on the restricted three-body problem are applied in the following 

areas: 

Spacecraft navigation and trajectory design (e.g., placing satellites in orbits near Lagrange 

points) 

Stabilization of satellite systems 

Monitoring and predicting the motion of asteroids and comets 

Analyzing the trajectories of space debris 
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5. Results and Discussion 

Within the scope of this study, the fundamental theoretical aspects, stability properties, and 

modern modeling approaches of the restricted three-body problem were thoroughly 

investigated. The analyses and simulations conducted led to the following key conclusions: 

 

5.1. Results of Theoretical Analysis 

Lagrange and Euler points are not always stable; according to linear stability analysis, the 

points L1, L2, , and L3,  are unstable, while L4 and L5 can be stable only if the mass ratio of the 

two primary bodies exceeds a certain threshold. 

The existence of the Jacobi integral allows for the precise definition of permitted and forbidden 

regions for the motion of the third body. This makes it possible to constrain and predict 

trajectories in space. 

 

5.2. Results of Numerical Modeling Approaches 

The fourth-order Runge–Kutta method provided the most stable and accurate results, 

particularly over short time intervals. 

Adaptive step-size algorithms enabled precise modeling of motion near potential collisions, 

which is essential for safely planning real space missions. 

Models developed on Python and MATLAB platforms successfully captured key orbital 

characteristics such as orbital shape, variations in velocity, and energy balance. 

 

5.3. Artificial Intelligence-Based Approaches 

Neural networks yielded highly accurate results in predicting the trajectory of the third body. 

Genetic algorithms improved efficiency in selecting initial conditions and system parameters. 

Reinforcement learning models enabled real-time optimization of orbital paths. 

 

5.4. Practical Significance 

A deep analysis of this problem holds great importance in space engineering, including the 

stable operation of satellites, detection of space debris, and trajectory planning for 

interplanetary missions. 

The modeling outcomes can be effectively used for visualizing astrodynamics problems, 

supporting educational processes, and enhancing scientific research. 

 

CONCLUSION 

The restricted three-body problem is one of the profound and complex problems in classical 

mechanics and holds significant relevance in modern astrodynamics, space engineering, and 

theoretical physics. This paper has provided a comprehensive analysis of the theoretical 

foundations, stability characteristics, and both numerical and artificial intelligence-based 

modeling approaches to this problem. 

Based on the results of the research: 

The existence and characteristics of Lagrange and Euler points were identified using the 

system’s equations of motion; 

Linear and Lyapunov-based stability analyses revealed unstable regions of motion; 
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Numerical and AI-based methods achieved high-accuracy results in modeling orbital motion. 

These approaches serve as vital tools for planning and safely managing the trajectories of 

space vehicles, as well as for studying the paths of natural celestial bodies. In the future, this 

research can be further enhanced by deepening the analysis of satellite dynamics, exploring 

multi-body systems, and integrating reinforcement learning techniques into the modeling 

process. 
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