# TOTAL HEP ON COPPER NUCLEI DETERMINED BY THE NQR METHOD IN HTSC LATTICES

To'rayev E. Y.

Shaymardonova S. Y.

## SUMMARY

The method of the Messbaur emission spectroscopy on the Ba-133 isotope, the parameters of the electric field gradient (EFG) tensor are determined.

It is established that the discrepancy between the experimental and calculated values of  $eq_{\kappa p}$  is explained by the imperfection of the models used to calculate  $eq_{\kappa p}$ .

**Keywords:** electric field gradient, tensor, frame, nuclear quadrupole resonance, isotope, the waking nucleus, spin, spectrum, quadrupole splitting, asymmetry parameters, experimental value, semiconductor, superconductor.

#### АННОТАЦИЯ

Методом эмиссионной Мессбауэровской спектроскопии на изотопе Ва – 133 определен параметры тензора градиента электрического поля (ГЭП).

Установлена, что расхождение экспериментальных и расчетных значений еq<sub>кр.</sub> объясняется несовершенством моделей, используемых для расчета еq<sub>кр.</sub>.

Ключевые слова: градиент электрического поля, тензор, решетка, ядерный квадрупольный резонанс, изотоп, возбужденное ядро, спин, спектр, квадрупольное расщепление, параметры асимметрии, экспериментальное значение, полупроводник, сверхпроводник.

### INTRODUCTION

Одна из основных в физике ВТСП-проблема определения места локализации дырок, которые и определяют явление сверхпроводимости Наиболее надежным способом идентификации дырок в решетках ВТСП считается сравнение эксперементально определенных параметров тензора градиента электрического поля (ГЭП) с результатами их теоритического расчета. Этот способ наиболее эффективен при измерении и расчете параметров тензора ГЭП все ВТСП, как правило, содержат медь, а параметры тензора ГЭП в узлах меди наиболее чуветвительны к зарядам атомных центров.

Настоящая работа посвящена рассмотрению экспериментальных и теоретических результатов определения параметров тензора ГЭП в узлах меди керамики УВа<sub>2</sub>Cu<sub>3</sub>O<sub>7-х</sub>. Соединение относится к числу наиболее типичных ВТСП и отличается относительной простотой синтеза, высокими значениями температуры перехода в сверхпроводящее состояние T<sub>c</sub> и возможностью регулирования T<sub>c</sub> с помощью изменения х [1]. Именно эти особенности объясняют то, что подавляющее число исследований по сопоставлению расчетных и экспериментальных параметров тензора ГЭП относится к УВа<sub>2</sub>Cu<sub>3</sub>O<sub>7-х</sub>.

### РАСЧЕТ ПАРАМЕТРОВ ТЕНЗОРА ГЭП

Диогонализированный тензор ГЭП описывается тремя компанентами V<sub>xx</sub>, V<sub>yy</sub>, иV<sub>zz</sub>, связанными уравнением Лапласа

$$V_{xx}+V_{yy}+V_{zz}=0(1)$$

И специальным выбором осей:

$$V_{xx} \left| \leq \right| V_{yy} \left| \leq \right| V_{zz} \left| \ .(2) \right.$$

В результате остается два независимы хпараметра: главная компонента тензора ГЭΠ еq= Vzz и параметр асимметрии η=(Vxx-Vyy)/Vzz.

Есть два источника ГЭП на исследуемом ядре окружающие ионы кристаллической решетки еq<sub>кр</sub> и несферические валентные электроны атома еq<sub>вал</sub>:

$$q = (1 - \gamma)q_{\kappa p} + (1 - R)q_{Ban}(3)$$

где ү, R– коэффициенты Штернхеймера, учитывающие экранирование

(антиэкранирование) ГЭП от ионов и валентных электронов электронами внутренных оболочек атома.

Расчет параметров тензора ГЭП от ионов кристаллической решетки может быть проведен в рамках модели точечных зарядов.

Для керамики УВа<sub>2</sub>Си<sub>3</sub>О<sub>7-х</sub> такие расчеты были проведены в [2-3].

В табл. 1 сведены наиболее типичные результаты для двух моделей распределения зарядов атомных центров в решетках УВа<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> и УВа<sub>2</sub>Cu<sub>3</sub>O<sub>6</sub>. Отметим, во –первых удовлетворительное согласие данных, полученных разными авторами, и, во – вторых, очевидную зависимость параметров тензора ГЭП в узлах меди от распределения зарядов атомных центров.

Экспериментальные методы определения параметров тензора ГЭП. Наиболее полная экспериментальная информация о параметрах тензора ГЭП может быть получена методами ядерного квадрупольного резонанса (ЯКР) и мессбауэровкой спектроскопии. Указанные методы основаны на взаимодействии квадрупольного момента ядра еQ с неоднородным электрическим полем.

| Модель                                                               | $eq_{\kappa p}(1),$ | η(1) | $eq_{\kappa p}(2),$ | η(2) | Данные |
|----------------------------------------------------------------------|---------------------|------|---------------------|------|--------|
|                                                                      | e/Å <sup>3</sup>    |      | e/ų                 |      |        |
| $V^{3+}Ba2^{2+}Cu(1)^{3+}Cu(2)2^{2+}O7^{2-}$                         | +1,162              | 0.40 | +0,700              | 0,13 | [1. 2] |
|                                                                      | +1,165              | 0,40 | +0,701              | 0,12 | [3]    |
|                                                                      | +1,146              | 0,35 | +0,662              | 0,11 | [4]    |
|                                                                      | +1,147              | 0,36 | +0,663              | 0,10 | [5]    |
| $V^{3+}Ba_2^{2+}Cu(1)^+Cu(2)_2^{3+}O_7^{2-}$                         | +0,979              | 0,08 | +0,510              | 0,13 | [5]    |
|                                                                      | +0,997              | 0,02 | +0,552              | 0,16 | [1, 2] |
| $y_{3^{+}Ba_{2}^{2^{+}}Cu(1)^{3^{+}}Cu(2)_{2}^{2^{+}}O_{6}^{2^{-}}}$ | -1,286              | 0,00 | +0,683              | 0,00 | [3]    |
|                                                                      | -1,256              | 0,00 | +0,668              | 0,00 | [1, 2] |
|                                                                      | -1,324              | 0,00 | +0,714              | 0,00 | [6]    |
|                                                                      | -1,264              | 0,00 | +0,654              | 0,12 | [4]    |
| $V^{3+}Ba_2^{2+}Cu(1)^{3+}Cu(2)_2^+O_6^{2-}$                         | -1,570              | 0,00 | +0,816              | 0,00 | [1, 2] |
|                                                                      | -1,589              | 0,00 | +0,806              | 0,00 | [4]    |

Таблица 1. Параметры тензора ГЭП в узлах меди для УВа<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> и УВа<sub>2</sub>Cu<sub>3</sub>O<sub>6</sub>. (результаты расчета в рамках модели точечных зарядов )

Для УВа<sub>2</sub>Cu<sub>3</sub>O<sub>7-х</sub>ядерный квадрупольный резонанс может наблюдаться на изотопах <sup>63</sup>Cu и <sup>65</sup>Cu. Для обоих изотопов I = 3/2, квадрупольные моменты Q(<sup>63</sup>Cu) = - 0,211 b и Q(<sup>65</sup>Cu) = - 0,195 b [4].



Рис.1. Спектр ЯКР<sup>63,65</sup> в УВа<sub>2</sub>Си<sub>3</sub>О<sub>7</sub> при 1,7 К[6] (а) и 4,2 К[7] (б).

При рассмотрении спектров ЯКР на изотопах  ${}^{63,65}$ Си в YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-х</sub> следует иметь в виду, что в структуре этого соединения медь занимает два положения Cu(1) и Cu(2). Кроме того, следует учитывать, что в природной смеси изотопов находятся  ${}^{63}$ Cuu  ${}^{65}$ Cu. Поэтому в спектрах ЯКР  ${}^{63,65}$ Cu керамики YBa<sub>2</sub>Cu<sub>3</sub>O-х следовало ожидать четыре линии:  ${}^{63}$ Cu(1),  ${}^{65}$ Cu(2) и  ${}^{65}$ Cu(2), причем интенсивности этих линий должны определяться заселенностью позиций Cu(1), Cu(2)(1:2) и содержанием изотопов  ${}^{63}$ Cu( ${}^{-70\%}$ ) и  ${}^{65}$ Cu( ${}^{-30\%}$ ). Действительно (см. рис. 1, а), спектр ЯКР  ${}^{63,65}$ Cu образца YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> состоит из двух пар линий, положение которых определено в большом числе работ [5, 6, 7-8]: 20,5; 22,05 и 29,2; 31,50 МГц. Исходя из величин квадрупольных моментов ядер  ${}^{63}$ Cu и  ${}^{65}$ Cu, и содержания этих изотоповв природной смеси изотопов менее интенсивные линии в этих парах (20,5 и 29,2 МГц) относятся к изотопу  ${}^{65}$ Cu, а более интенсивные (22,05 и 31,50 МГц).В дальнейшем будем рассматривать только спектр ЯКР на изотопе  ${}^{63}$ Cu как более интенсивный.

Таким образом, спектр ЯКР <sup>63</sup>Си в YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> состоит из двух линий: менее интенсивной (22.05 МГц) и более интенсивной (31.50 МГц).

Спектры ЯКР <sup>63,65</sup>Си в YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> (рис. 1,б) были исследованы в [9, 10,]. Две линни в области 26 -30 МГц относятся к чисто квадрупольному спектру на изотопах <sup>63,65</sup>Си для центров Cu(1), тогда как шесть линий в области 60-120 МГц осносятся к спектру ЯМР <sup>63,65</sup>Си во внутреннем магнитном поле для центров Cu (2) (напомним, что соединение

YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6</sub> является антиферромагнетиком, причем магнитно упорядочена только подрешетка Cu (2).

Данные ЯКР <sup>63</sup>Си позволяют определить суммарный ГЭП на ядрах <sup>63</sup>Си, тогда как данные мессбауэровской спектроскопии на изотопе <sup>67</sup>Cu(<sup>67</sup>Zn) позволяют определить вклад в ГЭП суммарный ГЭП от ионов кристаллической решетки в узлах меди. Очевидно, сопоставление данных двух методов позволяет в принципе оценить валентный вклад в ГЭП на ядрах <sup>63</sup>Cu. Так, для решетки YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> в позиции Cu(1) имеем (1-R)e<sup>2</sup>q<sub>вал</sub>Q = 100,1± 1,6 МГц и в позиции Cu(2) (1-R)e<sup>2</sup>q<sub>вал</sub>Q = 99,4± 1,0 МГц. Близость вкладов от валентных электронов в суммарный ГЭП на ядрах <sup>63</sup>Cu в позициях Cu(1) и Cu(2) свидельствует о близости элекронных структур этих центров. Значение (1-R)e<sup>2</sup>q<sub>вал</sub>Q = 100 МГц может быть получено и для центров меди в соединении La<sub>2</sub>CuO<sub>4</sub> [10], где медь заведомо двухвалентна Cu<sub>2</sub><sup>+</sup>. Следовательно, и в YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> центры Cu(1) и Cu(2) также двухвалентны.

Таким образом, метод ЯКР на изотопах <sup>63,65</sup>Си позволяет экспериментально определить суммарный ГЭП на ядрах <sup>63,65</sup>Си в решетках ВТСП и вследствие этого отсутствует, как правило, возможность сопоставления экспериментальных и расчетных (по модели точечных зарядов) параметров тензора ГЭП.

### ЛИТЕРАТУРА

- 1. Warren W., Walstedt R. E. .et. al // Phys. Rev. Lett. 1987. V. 59. P. 1860.
- 2. Mali M., Brinkmann D. .et. al // Phys. Lett. A. 1987. V. 124. P. 112.
- 3. Матухин В. Л. И др.//Сверхпроводимость. 1990. Т. З. В.208.
- 4. Любутин И.С. и др. // Сверхпроводимость. 1990. Т. 95. С. 1908.
- 5. Серегин П.П., Серегин Н.П. и др.//Сверхпроводимость. 1991. Т. 4. В.5.
- 6. Тураев Н. Ю., Тураев Э. Ю. и др. // Докл. Ан УзССР. 1991.
- 7. Мастеров В. Ф., Серегин П. П. и др. // Сверхпроводимость. 1990. Т. З. С.449.
- 8. Серегин П.П., и др// ПисьмаЖЭТФ. 1990. Т. 51. С. 593.
- 9. Тураев Н. Ю. и др. // Докл. Ан УзССР. 1991.
- 10. Насреддинов Ф.С., Серегин П.П. и др.//ЖЭТФ. 1991. Т.99. В.3. С.1026.
- 11.1991. T.99.B.3. C.1026.