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ABSTRACT 

It is impossible for students to master the basic ideas and conclusions of quantum mechanics 

without solving a certain set of problems. Problems play a significant role in the educational 

process, forming not only logical thinking, but also influencing the overall development of the 

students.  

The article poses and solves problems about stationary one-dimensional problems in quantum 

mechanics. 
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Introduction 

There is great interest in solving and discussing mathematical problems of quantum mechanics 

in theoretical physics and other fields related to physics. Quantum mechanics is the most 

important achievement of the 20th century. It is one of the most important branches of physics 

focusing on nanoscale systems relevant to optics, chemistry, and electronics. Only quantum 

mechanics can describe the reality of orbitals and energy levels in atoms. In addition to the 

wave nature, quantum mechanics can shed light on the quantization of light and its corpuscular 

nature [1]. 

 

Literature 

The equations of quantum mechanics are described in various concepts in the matrix mechanics 

of W.Heisenberg, the wave mechanics of E.Schrodinger, and the “vector” algebra of states of P. 

Dirak. E. Schrodinger proved the equivalence of wave and matrix mechanics and combined 

them under the general name of quantum mechanics. Although the above forms of quantum 

mechanics are described in specific ways and have different mathematical tools, they are 

focused on the study of the same micro-object, the final results are the same and can be 

transferred from one to another. Since wave mechanics is simpler and more obvious from the 

mathematical point of view, the basic concepts and laws of quantum mechanics are described 

based on the Schrodinger equation [2]. 

The Schrodinger equation was discovered based on experimental results to describe the wave 

and corpuscular particle motion in different potential fields. Therefore, they cannot be derived 

using the laws of classical physics, which ruled until quantum mechanics. Schrodinger's 

equations are given ready-made like Newton's second law [3]: 
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ℏ

i

dΨ

dt
= −

ℏ2

2m
∇2Ψ + UΨ   (1) 

 

(1) is the complete Schrödinger equation. It allows one to study the motion of particles in time-

dependent fields. Equation (1) can be expressed in a simpler form using the Hamilton operator: 

      ĤΨ = EΨ    (2) 

 

The Schrodinger equation is a second order linear partial differential equation. Therefore, the 

Ψ function, which is a solution to the equation, must satisfy the following conditions: 

1. It itself and its first-order derivative are continuous; 

2. Unambiguous; 

3. Finiteness (since the probability cannot be > 1), 

4. Satisfies the boundary conditions arising from the requirements of the specific issue. 

 

RESEARCH METHODOLOGY 

The study used analysis and synthesis of scientific and scientific-methodological literature, 

pedagogical observations, and methods of pedagogical experience. 

 

RESULTS 

Using the functions ψ and Ψ, which are solutions to the Schrodinger equations, the probability 

of finding a particle in the region defined by these functions is found. 

1. The particle is in a one-dimensional rectangular potential with side a. Determine the 

probability of finding a particle in the lowest energy state in the region 0 ≤ x ≤ l/3 [4]. 

Solution: 

U(x) = 0,       0 ≤ x ≤ l 

U(x) = ∞,    x < 0, x > l 

x = 0, x = l - coordinates of the pit walls (Fig.1, a). 

 

 

Fig.1. 

Since its walls are absolutely impermeable, the particle cannot be in areas I and III, that is, the 

probability of finding a particle in these areas is zero, from which it is known that ψ1 = ψ3 = 0. 

For field II, we write the Shrodinger equation for: 

 

∂2ψ

∂x2
+

2mE

ℏ2
ψ = 0 
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If we denote k2 =
2mE

ℏ2
 , the above expression takes the form: 

𝜕2𝜓

𝜕𝑥2
+

2𝑚𝐸

ℏ2
𝜓 = 0 

 

We look for a solution to this differential equation in the form 

 

𝜓(𝑥) = 𝐴 𝑠𝑖𝑛 (𝑘𝑥 + 𝛼)  (1) 

 

From the condition of continuity of the wave function 𝜓(0) = 0. It follows that 𝛼 = 0. Since 

𝜓(𝑙) = 0 

And equals  

𝐴 𝑠𝑖 𝑛 𝑘𝑙 = 0 

 

So, the simplest trigonometric equation was obtained. To solve it 

𝑘𝑙 = 𝜋𝑛   (𝑛 = 1,2,3, … ). from this 

𝑘 =
𝜋𝑛

𝑙
 

Then expression (1) will take the following form: 

 

𝜓𝑛(𝑥) = 𝐴 𝑠𝑖𝑛
𝜋𝑛

𝑙
𝑥 

 

Let us determine the coefficient 𝐴 from the conditions for normalizing the wave function: 

∫|𝜓(𝑥)|2𝑑𝑥 = 1

𝑙

0

 

𝐴2 ∫ 𝑠𝑖𝑛2
𝜋𝑛

𝑙
𝑥𝑑𝑥 = 1

𝑎

0

 

 

𝐴2

2
∫ (1 − 𝑐𝑜𝑠

2𝜋𝑛

𝑙
𝑥) 𝑑𝑥 =

𝑙

0

𝐴2

2
𝑙 −

A2

2
sin

2πnx

l

l

2πn
|

l
0

=
A2

2
l = 1; 

A = √
2

l
. 

ψn(x) = √
2

l
 sin

πn

l
x –  is the normalized eigenfunction. 

According to the conditions of the problem, the particle has the lowest energy, from which it is 

known that n=1. Wave function for this case 

 

ψ1(x) = √
2

l
 sin

π

l
x 
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Let us determine the probability of finding a particle in the region 0 ≤ x ≤ l/3 [7]: 

 

ω = ∫ |ψ1(x)|2dx =

l/3

0

2

l
∫ sin2

πn

l
xdx =

l/3

0

 

 

=
1

l
∫ (1 − cos

2πx

l
) dx =

l/3

0

1

l
∙

l

3
−

1

l
∙

l

2π
∙ sin

2πx

l
|

l

3
0

= 0,195 

 

The value of the ω function is equal to the area of the shaded area in Fig.1b. 

2. The particle is in a one-dimensional rectangular potential well with side l. Determine the 

coordinates of the point at which the probability of finding a particle is greatest, around points 

with coordinate x at the first and second energy levels [5]. 

Solution: The squared modulus of the wave function represents the probability density of 

particle detection: 

ρ(x) = |ψ(x)|2 

 

According to the conditions of the problem, the particle is in a one-dimensional potential. 

Therefore, the particle density function 

 

ψ(x) = √
2

l
 sin

πn

l
x 

for n = 1 

ρ1(x) = |ψ1(x)|2 =
2

l
sin2

πx

l
 

 

At the point where the trigonometric function reaches its maximum value, the particle detection 

probability density reaches its maximum value, which corresponds to the point x = l/2  [7] 

(Fig.2, a). 

for n = 2 

ρ2(x) = |ψ2(x)|2 =
2

l
sin2

2πx

l
 

 

in this case, from the solution of the trigonometric function, it is known that the points at which 

the probability density of particle detection reaches its maximum value are x = l/4 and x = 3l/4 

(Fig.2, b). 
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Fig.2. A plot of particle detection probability density versus its coordinate. 

a) for n=1, b) n=2 cases. 

 

One way to think of a particle is to think of |ψ2(x)|2 as a “cloud,” where high density corresponds 

to high probability of detection (Fig 3). 

 

 
Fig.3. Electronic "cloud", for a) n=1, b) n=2 cases. 

 

In Fig.3 it can be seen that with n = 1 the particle detection probability density reaches its 

maximum value at one point, and with n = 2 it reaches its maximum value at two points. This 

corresponds to the graph presented in fig.2 [8]. 

 

CONCLUSION 

The Schrodinger equation is the fundamental equation of non-relativistic quantum mechanics. 

It can take different forms depending on the potential field in which the particle is located. 

The article found the wave function by solving the Schrödinger equation. The wave function 

itself has no physical meaning, but the square of its modulus has a physical meaning and means 

the probability of detecting a particle in a given area. 

Teaching students to solve problems involving one-dimensional potential wells provides a 

foundation for them to solve problems involving two-dimensional and three-dimensional 

potential wells. 

The problems given as examples in the article will help strengthen students’ theoretical 

knowledge on the topic “The Schrodinger Equation” in the science of quantum mechanics. From 

the solutions to the problems, it is clear that to solve this type of problem, students need to have 

basic knowledge, such as “Trigonometric function”, “Derivative operation”, “Finding the original 

function”, “Graphing”. complex functions" from a mathematics course. 
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