STATEMENT AND INVESTIGATION OF ONE BOUNDARY PROBLEM FOR ONE PARABOLIC-HYPERBOLIC EQUATION OF THE THIRD ORDER IN A PENTAGONAL DOMAIN WITH THREE LINES OF TYPE CHANGE

M. Mamajonov Associate Professor of KSPI

> D.D. Aroev PhD. KSPI

G. Shermatova Undergraduate KSPI

ANNOTATION

In the present work, we pose and study one boundary value problem for a parabolic-hyperbolic third-order equations of the form $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + c\right)(Lu) = 0$ in a pentagonal region with three lines of change of type, one of the hyperbolic parts of which is a triangle, and the other two are rectangles.

Keywords; parabolic-hyperbolic, open segment, equation, Volterran, integral equations.

INTRODUCTION

At present, the study of various boundary value problems for equations of the third and higher orders of the parabolic-hyperbolic type is being developed in a broad sense. (for example, see [1] - [7]).

In this article, we pose and study one boundary value problem for the equation

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + c\right) (Lu) = 0, \tag{1}$$

in the area of G the plane xOy, where $c \in R$, $G = G_1 \cup G_2 \cup G_3 \cup G_4 \cup J_1 \cup J_2 \cup J_3$, and a G_1 rectangle with vertices at points A(0;0), B(1;0), $B_0(1,1)$, $A_0(0,1)$; G_2 - triangle with vertices at points C(2,0). E(1/2,-3/2). D(-1,0); G_3 - rectangle with vertices at points A. D. $D_0(-1,1)$, A_0 ; G_4 - rectangle with vertices at points G_3 - rectangle with vertices at points G_4 - open segment G_4 - open

$$Lu = \begin{cases} u_{xx} - u_{y}, & (x, y) \in G_{1}, \\ u_{xx} - u_{yy}, & (x, y) \in G_{j}, & j = 2, 3, 4. \end{cases}$$

For equation (1), the following is set

A task M_{11c} . It is required to find a function u(x,y) that is 1) continuous in \overline{G} and $G \setminus J_1 \setminus J_2 \setminus J_3$ has in the domain continuous derivatives involved in the equation (2.1.1), moreover, u_x and u_y are continuous up to a part of the boundary of the region G, indicated in the boundary

conditions; 2) satisfies equation (2.1.1) in the domain $G \setminus J_1 \setminus J_2 \setminus J_3$; 3) satisfies the following boundary conditions:

$$u(2, y) = \varphi_{1}(y), \quad 0 \le y \le 1; \quad (2) \qquad u(-1, y) = \varphi_{2}(y), \quad 0 \le y \le 1; \quad (3)$$

$$u_{x}(-1, y) = \varphi_{3}(y), \quad 0 \le y \le 1; \quad (\text{four}) \qquad u|_{EQ} = \psi_{3}(x), \quad 1/2 \le x \le 1; \quad (5)$$

$$u|_{CP} = \psi_{2}(x), \quad 3/2 \le x \le 2; \quad (6) \qquad u|_{DE} = \psi_{1}(x), \quad -1 \le x \le 1/2; \quad (7)$$

$$\frac{\partial u}{\partial n}|_{DE} = \psi_{4}(x), \quad -1 \le x \le 1/2; \quad (\text{eight})$$

and 4) satisfies the following bonding conditions:

$$u(x,+0) = u(x,-0) = T(x), -1 \le x \le 2; (9) \ u_y(x,+0) = u_y(x,-0) = N(x), -1 \le x \le 2; \text{ (ten)}$$

$$u_{yy}(x,+0) = u_{yy}(x,-0) = M(x), \ x \in (-1,0) \cup (0,1) \cup (1,2); \text{ (eleven)}$$

$$u(+0,y) = u(-0,y) = \tau_4(y), \ 0 \le y \le 1; (12) \ u_x(+0,y) = u_x(-0,y) = v_4(y), \ 0 \le y \le 1; (13)$$

$$u_{xx}(+0,y) = u_{xx}(-0,y) = \mu_4(y), \ 0 < y < 1; \text{ (fourteen)} \ u(1+0,y) = u(1-0,y) = \tau_5(y), \ 0 \le y \le 1; \text{ (fifteen)}$$

$$u_x(1+0,y) = u_x(1-0,y) = v_5(y), \ 0 \le y \le 1; \text{ (16)} \ u_{xx}(1+0,y) = u_{xx}(1-0,y) = \mu_5(y), \ 0 < y < 1. \text{ (17)}$$

Here φ_i $(i=\overline{1,3})$ and ψ_j $(j=\overline{1,4})$ – given sufficiently smooth functions, n – the inner normal to the line x-y=2 (CE) or x+y=-1 (DE), a Q(1,-1), P(3/2,-1/2). Besides,

$$T(x) = \begin{cases} \tau_{2}(x), & -1 \le x \le 0, \\ \tau_{1}(x), & 0 \le x \le 1, \\ \tau_{3}(x), & 1 \le x \le 2; \end{cases} \qquad N(x) = \begin{cases} v_{2}(x), & -1 \le x \le 0, \\ v_{1}(x), & 0 \le x \le 1, \\ v_{3}(x), & 1 \le x \le 2; \end{cases} \qquad M(x) = \begin{cases} \mu_{2}(x), & -1 < x < 0, \\ \mu_{1}(x), & 0 < x < 1, \\ \mu_{3}(x), & 1 < x < 2, \end{cases}$$

a τ_i , ν_i , μ_i $\left(i=\overline{1,5}\right)$, - unknown yet sufficiently smooth functions.

The following theorem holds:

Theorem. If $\varphi_1(y) \in C^3[0,1]$, $\varphi_2(y) \in C^3[0,1]$, $\varphi_3(y) \in C^2[0,1]$, $\psi_1(x) \in C^3[-1,1/2]$, $\psi_2(x) \in C^3[3/2,2]$, $\psi_3(x) \in C^3[1/2,1]$, $\psi_4(x) \in C^2[-1,1/2]$ and the matching conditions $\tau_3(2) = \psi_2(2) = \varphi_1(0)$, $\tau_2(-1) = \psi_1(-1) = \varphi_2(0)$, $\psi_1(1/2) = \psi_3(1/2)$, $\tau_1(0) = \tau_4(0) = \tau_2(0)$, $\tau_1'(0) = \tau_2'(0)$, $\tau_1(0) = \tau_4'(0)$, $\tau_1(1) = \tau_5(0) = \tau_3(1)$, $\tau_1(1) = \tau_5'(0)$, are satisfied $\tau_1'(1) = \tau_3'(1)$, then the task M_{11c} admits a unique solution.

Proof. We will prove the theorem by the method of constructing a solution. To do this, we rewrite equation (1) in the form

$$u_{1xx} - u_{1y} = \omega_1(x - y)e^{-cy}, (x, y) \in G_1;$$

$$u_{ixy} - u_{iyy} = \omega_i(x - y)e^{-cy}, (x, y) \in G_i, i = 2, 3, 4,$$
(19)

where the notation $u(x,y)=u_i(x,y)$, $(x,y)\in G_i$, $i=\overline{1,4}$, and $\omega_i(x-y)$, $i=\overline{1,4}$ - unknown yet sufficiently smooth functions.

First, consider equation (19) (i = 2) in the region G_2 . Its solution that satisfies the conditions (9), (10) is written as

$$u_{2}(x,y) = \frac{1}{2} \left[T(x+y) + T(x-y) \right] + \frac{1}{2} \int_{x-y}^{x+y} N(t) dt - \frac{1}{2} \int_{0}^{y} e^{-c\eta} d\eta \int_{x-y+\eta}^{x+y-\eta} \omega_{2}(\xi-\eta) d\xi. \text{ (twenty)}$$

Substituting (20) into condition (8) after some calculations and transformations, we find

$$\omega_2(x-y) = \sqrt{2}\psi_4'\left(\frac{x-y-1}{2}\right)e^{-\frac{c}{2}(x-y+1)}, -1 \le x-y \le 2.$$

Taking into account condition (7) from (20), after some calculations, we obtain the relation between the unknown functions T(x) and N(x):

$$T'(x) - N(x) = \alpha_1(x), -1 \le x \le 2, 21$$

where
$$\alpha_1(x) = \psi_1'(\frac{x-1}{2}) + \omega_2(x) \int_0^{-\frac{x+1}{2}} e^{-c\eta} d\eta$$

At $-1 \le x \le 0$, equation (21) has the form

$$\tau_2'(x) - \nu_2(x) = \alpha_1(x), -1 \le x \le 0.$$
 (22)

Substituting (20) into condition (5), we obtain the relation

$$\tau_2'(x) + \nu_2(x) = \delta_1(x), -1 \le x \le 0, (23)$$

where

$$\delta_1(x) = \psi_3'\left(\frac{x+2}{2}\right) + \int_0^{\frac{x-2}{2}} e^{-c\eta}\omega_2(x-2\eta)d\eta.$$

From (22) and (23) we find

$$\tau_{2}'(x) = \frac{1}{2} \left[\alpha_{1}(x) + \delta_{1}(x) \right], \ \nu_{2}(x) = \frac{1}{2} \left[\delta_{1}(x) - \alpha_{1}(x) \right], \ -1 \le x \le 0. \ (24)$$

Integrating the first of equalities (24) from -1 to x, we find

$$\tau_{2}(x) = \frac{1}{2} \int_{-1}^{x} \left[\alpha_{1}(t) + \delta_{1}(t)\right] dt + \psi_{1}(-1), -1 \le x \le 0.$$

At $1 \le x \le 2$, equation (21) has the form

$$\tau_3'(x) - \nu_3(x) = \alpha_1(x), 1 \le x \le 2.$$
 (25)

Substituting (20) into condition (6), we obtain the relation $\tau'_3(x) + \nu_3(x) = \delta_2(x)$, $1 \le x \le 2$, (26)

where

$$\delta_2(x) = \psi_2'\left(\frac{x+2}{2}\right) + \int_0^{\frac{x-2}{2}} e^{-c\eta} \omega_2(x-2\eta) d\eta.$$

From (25) and (26) we find

$$\tau_{3}'(x) = \frac{1}{2} \left[\alpha_{1}(x) + \delta_{2}(x) \right], \ v_{3}(x) = \frac{1}{2} \left[\delta_{2}(x) - \alpha_{1}(x) \right], \ 1 \le x \le 2.$$
 (27)

Integrating the first of equalities (27) from 2 to x, we find

$$\tau_3(x) = \frac{1}{2} \int_{2}^{x} [\alpha_1(t) + \delta_2(t)] dt + \psi_2(2), \ 1 \le x \le 2.$$

And for , $0 \le x \le 1$ equation (21) has the form

$$\tau_1'(x) - \nu_1(x) = \alpha_1(x), \ 0 \le x \le 1.$$
 (28)

Next, we G_1 rewrite equation (1) in the domain in the form

$$u_{1xxx} - u_{1xy} + u_{1xxy} - u_{1yy} + cu_{1xx} - cu_{1y} = 0.$$

Passing in the last equation and in equation (19) (i = 2) to the limit at $y \to 0$, we obtain the second and third relations between the unknown functions $\tau_1(x)$, $\nu_1(x)$ and $\mu_1(x)$ on the type change line J_1 :

$$\tau_{1}'''(x) - v_{1}'(x) + v_{1}''(x) - \mu_{1}(x) + c\tau_{1}''(x) - cv_{1}(x) = 0, \ 0 \le x \le 1, \ (29)$$

$$\mu_1(x) = \tau_1''(x) - \omega_2(x), \ 0 \le x \le 1.$$
 (thirty)

Eliminating the functions and from equations (28), (29) and (30) $v_1(x)$ and $\mu_1(x)$ integrating the resulting equation from 0 to x, we arrive at the equation

$$\tau_{1}''(x) - \left(1 - \frac{c}{2}\right)\tau_{1}'(x) - \frac{c}{2}\tau_{1}(x) = \alpha_{2}(x) + k_{1}, \ 0 \le x \le 1, \ (31)$$

where

$$\alpha_{2}(x) = \frac{1}{2}\alpha_{1}'(x) - \frac{1}{2}\alpha_{1}(x) - \frac{1}{2}\int_{0}^{x} \left[\omega_{2}(t) + c\alpha_{1}(t)\right]dt,$$

and k_1 – yet unknown constant.

When solving equation (31), there may be the following cases: 1°. $c \neq 0$, $c \neq -2$; 2°. c = -2; 3°. c = 0.

Consider case 1°. In this case, solving equation (31) under the conditions

$$\tau_{1}(0) = \frac{1}{2} \int_{-1}^{0} \left[\alpha_{1}(t) + \delta_{1}(t) \right] dt + \psi_{3}(-1). \quad \tau'_{1}(0) = \frac{1}{2} \left[\alpha_{1}(0) + \delta_{1}(0) \right].$$

$$\tau_{1}(1) = -\frac{1}{2} \int_{1}^{2} \left[\alpha_{1}(t) + \delta_{2}(t) \right] dt + \psi_{2}(2), \qquad (32)$$

find

$$\tau_{1}(x) = \frac{2}{2+c} \int_{0}^{x} \left[e^{x-t} - e^{\frac{c}{2}(t-x)} \right] \alpha_{2}(t) dt + \frac{2k_{1}}{2+c} \left[e^{x} - 1 - \frac{2}{c} \left(1 - e^{-\frac{c}{2}x} \right) \right] +$$

$$k_2 e^x + k_3 e^{-\frac{c}{2}x}, \quad 0 \le x \le 1,$$

where

$$k_{3} = \frac{1}{2+c} \left\{ \int_{-1}^{0} \left[\alpha_{1}(t) + \delta_{1}(t) \right] dt + 2\psi_{3}(-1) - \left[\alpha_{1}(0) + \delta_{1}(0) \right] \right\},$$

$$k_{2} = \frac{1}{2} \left[\alpha_{1}(0) + \delta_{1}(0) \right] + \frac{c}{2} k_{3}, \ k_{1} = \left[e - 1 - \frac{2}{c} \left(1 - e^{-\frac{c}{2}} \right) \right]^{-1} \times$$

$$\times \left\{ \frac{2+c}{2} \left[\psi_2\left(2\right) - k_2 e - k_3 e^{-\frac{c}{2}} \right] - \int_0^1 \left[e^{1-t} - e^{\frac{c}{2}(t-1)} \right] \alpha_2\left(t\right) dt - \frac{c+2}{4} \int_1^2 \left[\alpha_1\left(t\right) + \delta_2\left(t\right) \right] dt \right\}.$$

Consider case 2°. In this case, solving equation (31) under conditions (32), we find

$$\tau_1(x) = \int_0^x (x-t)e^{x-t}\alpha_2(t)dt + k_1[1+(x-1)e^x] + (k_2+k_3x)e^x, \ 0 \le x \le 1,$$

where

$$k_{2} = \frac{1}{2} \int_{-1}^{0} \left[\alpha_{1}(t) + \delta_{1}(t) \right] dt + \psi_{3}(-1) \cdot k_{3} = \frac{1}{2} \left[\alpha_{1}(0) + \delta_{1}(0) \right] - k_{2}.$$

$$k_{1} = \psi_{2}(2) - (k_{2} + k_{3})e - \int_{0}^{1} (1 - t)e^{1 - t}\alpha_{2}(t)dt - \frac{1}{2}\int_{1}^{2} \left[\alpha_{1}(t) + \delta_{2}(t)\right]dt.$$

Consider case 3°. In this case, solving equation (31) under conditions (32), we find

$$\tau_1(x) = \int_0^x e^{x-t} \alpha_3(t) dt + k_1(e^x - x - 1) + k_2(e^x - 1) + k_3 e^x, \ 0 \le x \le 1,$$

where

$$\alpha_{3}(x) = \int_{0}^{x} \alpha_{2}(t) dt \cdot k_{3} = \frac{1}{2} \int_{-1}^{0} \left[\alpha_{1}(t) + \delta_{1}(t) \right] dt + \psi_{3}(-1) \cdot k_{2} = \frac{1}{2} \left[\alpha_{1}(0) + \delta_{1}(0) \right] - k_{3}.$$

$$k_{1} = \frac{1}{e-2} \left[\psi_{2}(2) - k_{2}(e-1) - k_{3}e - \int_{0}^{1} e^{1-t} \alpha_{3}(t) dt - \frac{1}{2} \int_{1}^{2} \left[\alpha_{1}(t) + \delta_{2}(t) \right] dt \right].$$

Thus, we have found the function $u_2(x, y)$ in the domain G_2 completely.

Now let's go to the area G_3 . Passing in equations (19) (i=2) and (19) (i=3) to the limit at $y \to 0$, we find

$$\mu_2(x) = \tau_2''(x) - \omega_2(x), \ \mu_2(x) = \tau_2''(x) - \omega_3(x), \ -1 \le x \le 0.$$

It follows from these equations $\omega_3(x) = \omega_2(x)$, $-1 \le x \le 0$. Changing the argument x to x - y, we have $\omega_3(x - y) = \omega_2(x - y)$, $-1 \le x - y \le 0$.

Further, passing in equations (19) (i = 3) and (18) to the limit at $x \to 0$ and excluding the function from the obtained equations $\mu_1(y)$, we obtain

$$\overline{\omega_{1}}\left(-y\right) = \omega_{2}\left(-y\right) + \left\lceil \tau_{4}''\left(y\right) - \tau_{4}'\left(y\right) \right\rceil e^{cy}, (33)$$

where it should be
$$\omega_1(x-y) = \begin{cases} \overline{\omega_1}(x-y), & -1 \le x-y \le 0, \\ \overline{\omega_1}(x-y), & 0 \le x-y \le 1. \end{cases}$$

Consider the following auxiliary problem:

$$\begin{cases} u_{3xx} - u_{3yy} = \Omega_3(x - y)e^{-cy}, & (x, y) \in G_3, \\ u_3(x, 0) = T_2(x), & u_{3y}(x, 0) = N_2(x), & -2 \le x \le 1, \\ u_3(-1, y) = \varphi_2(y), & u_{3x}(-1, y) = \varphi_4(y), & u_3(0, y) = \tau_4(y), & 0 \le y \le 1. \end{cases}$$

The solution of this problem that satisfies all the conditions of the same problem, except for the condition $u_{3x}(-1, y) = \varphi_4(y)$, will be sought in the form

$$u_3(x, y) = u_{31}(x, y) + u_{32}(x, y) + u_{33}(x, y), (34)$$

where is $u_{31}(x, y)$ – the solution of the problem

$$\begin{cases} u_{31xx} - u_{31yy} = 0, \\ u_{31}(x,0) = T_2(x), \ u_{31y}(x,0) = 0, \ -2 \le x \le 1, \\ u_{31}(-1,y) = \varphi_2(y), \ u_{31}(0,y) = \tau_4(y), \ 0 \le y \le 1; \end{cases}$$
(35)

 $u_{32}(x,y)$ - the solution of the problem

$$\begin{cases} u_{32xx} - u_{32yy} = 0, \\ u_{32}(x,0) = 0, \ u_{32y}(x,0) = N_2(x), \ -2 \le x \le 1, (36) \\ u_{32}(-1,y) = 0, \ u_{32}(0,y) = 0, \ 0 \le y \le 1; \end{cases}$$

 $u_{33}(x,y)$ - the solution of the problem

$$\begin{cases} u_{33xx} - u_{33yy} = \Omega_3 (x - y) e^{-cy}, \\ u_{33} (x, 0) = 0, u_{33y} (x, 0) = 0, -2 \le x \le 1, (37) \\ u_{33} (-1, y) = 0, u_{33} (0, y) = 0, 0 \le y \le 1. \end{cases}$$

Using the continuation method, we find solutions to problems (35)-(37). They look like

$$u_{31}(x,y) = \frac{1}{2} [T_2(x+y) + T_2(x-y)], (38)$$

$$u_{32}(x,y) = \frac{1}{2} \int_{x-y}^{x+y} N_2(t) dt$$
, (39)

$$u_{33}(x,y) = -\frac{1}{2} \int_{0}^{y} e^{-c\eta} d\eta \int_{y-y+\eta}^{x+y-\eta} \Omega_{3}(\xi-\eta) d\xi, (40)$$

where

$$T_{2}(x) = \begin{cases} 2\varphi_{2}(-1-x) - \tau_{2}(-2-x), & -2 \le x \le -1, \\ \tau_{2}(x), & -1 \le x \le 0, \\ 2\tau_{4}(x) - \tau_{2}(-x), & 0 \le x \le 1; \end{cases}$$
$$[-\nu_{2}(-2-x), & -2 \le x \le -1,$$

$$N_{2}(x) = \begin{cases} -v_{2}(-2-x), -2 \le x \le -1 \\ v_{2}(x), -1 \le x \le 0, \\ -v_{2}(-x), 0 \le x \le 1; \end{cases}$$

a $\Omega_3(x)$ is defined as follows: in the interval $-1 \le x \le 0$ it has the form $\Omega_3(x) = \omega_2(x)$, and in the intervals $-2 \le x \le -1$ and $0 \le x \le 1$ it is unknown.

The first two conditions of problem (37) are fulfilled automatically. Satisfying the third of the conditions of problem (37), after simplification, we obtain

$$\Omega_3 \left(-1 - y \right) \int_0^y e^{-c\eta} d\eta = -\int_0^y e^{-c\eta} \Omega_3 \left(y - 1 - 2\eta \right) d\eta. \tag{41}$$

Assuming in (40) $x \rightarrow 0$, after some transformations, we have

$$\omega_2(-y)\int_0^y e^{-c\eta}d\eta = -\int_0^y e^{-c\eta}\Omega_3(y-2\eta)d\eta.$$

Making a change of variables $y-2\eta=z$, from the last equality after long transformations, we find

$$\Omega_{3}(y) = 2\omega_{2}'(-y)\int_{0}^{y} e^{-c\eta}d\eta - \omega_{2}(-y)\left[c\int_{0}^{y} e^{-c\eta}d\eta + 3e^{-cy}\right]. (42)$$

Substituting (38), (39), and (40) into (34), we have

$$u_{3}(x,y) = \frac{1}{2} \left[T_{2}(x+y) + T_{2}(x-y) \right] + \frac{1}{2} \int_{x-y}^{x+y} N_{2}(t) dt - \frac{1}{2} \int_{0}^{y} e^{-c\eta} d\eta \int_{x-y+\eta}^{x+y-\eta} \Omega_{3}(\xi-\eta) d\xi . \tag{43}$$

Differentiating this solution with respect to x, we have

$$u_{3x}(x,y) = \frac{1}{2} [T_2'(x+y) + T_2'(x-y)] + \frac{1}{2} [N_2(x+y) - N_2(x-y)] -$$

$$-\frac{1}{2}\int_{0}^{y}e^{-c\eta}\left[\Omega_{3}(x+y-2\eta)-\Omega_{3}(x-y)\right]d\eta.$$
 (44)

Letting in (44) tend x to minus one , taking into account the condition $u_{3x}(-1,y) = \varphi_4(y)$ and equality (41), after some transformations, we find

$$\Omega_{3}(-1-y) = \left\{ 2\left[\tau_{2}''(y-1) + \nu_{2}'(y-1) - \varphi_{2}''(y) - \varphi_{3}'(y)\right] - \omega_{2}(y-1) + \right\}$$

$$+c\left[\tau_{2}'\left(y-1\right)+\nu_{2}\left(y-1\right)-\varphi_{2}'\left(y\right)-\varphi_{3}\left(y\right)\right]\right\}e^{cy},\;0\leq y\leq1\;.$$

Letting in (44) tend x to zero, taking into account (13) and (42), after some transformations we obtain the relation

$$v_4(y) = \tau_4'(y) + \beta_1(y), 0 \le y \le 1, (45)$$

where

$$\beta_1(y) = \tau_2'(-y) - \nu_2(y) - \omega_2(-y) \int_0^y e^{-c\eta} d\eta$$
.

Now let's go to the area G_4 . Passing in equations (19) (i=2) and (20) (i=4) to the limit at $y \to 0$, we find

$$\mu_3(x) = \tau_3''(x) - \omega_2(x), \ \mu_3(x) = \tau_3''(x) - \omega_4(x), \ 1 \le x \le 2.$$

It follows from these equations $\omega_4(x) = \omega_2(x)$, $1 \le x \le 2$. Changing the argument x to x - y, we have $\omega_4(x - y) = \omega_2(x - y)$, $1 \le x - y \le 2$.

Further, passing in equations (19) (i=4) and (18) to the limit at $x \to 1$, after some calculations, we obtain

$$\Omega_4 \left(1 - y \right) = \overline{\overline{\omega_1}} \left(1 - y \right) - e^{-cy} \left[\tau_5'' \left(y \right) - \tau_5' \left(y \right) \right]. \tag{46}$$

Now consider the following auxiliary problem:

$$\begin{cases} u_{4xx} - u_{4yy} = \Omega_4 (x - y) e^{-cy}, & (x, y) \in G_4, \\ u_4 (x, 0) = T_3 (x), & u_{4y} (x, 0) = N_4 (x), & 0 \le x \le 3, \\ u_4 (2, y) = \varphi_1 (y), & u_4 (1, y) = \tau_5 (y), & 0 \le y \le 1. \end{cases}$$

The solution to this problem will be sought in the form

$$u_4(x, y) = u_{41}(x, y) + u_{42}(x, y) + u_{43}(x, y), (47)$$

where is $u_{41}(x, y)$ – the solution of the problem

$$\begin{cases} u_{41xx} - u_{41yy} = 0, \\ u_{41}(x,0) = T_3(x), \ u_{41y}(x,0) = 0, \ 0 \le x \le 3, \\ u_{41}(2,y) = \varphi_1(y), \ u_{41}(1,y) = \tau_5(y), \ 0 \le y \le 1; \end{cases}$$
(48)

 $u_{42}(x,y)$ - the solution of the problem

$$\begin{cases} u_{42xx} - u_{42yy} = 0, \\ u_{42}(x,0) = 0, \ u_{42y}(x,0) = N_3(x), \ 0 \le x \le 3, (49) \\ u_{42}(2,y) = 0, \ u_{42}(1,y) = 0, \ 0 \le y \le 1; \end{cases}$$

 $u_{43}(x, y)$ – the solution of the problem

$$\begin{cases} u_{43xx} - u_{43yy} = \Omega_4 (x - y) e^{-cy}, \\ u_{43} (x, 0) = 0, u_{43y} (x, 0) = 0, 0 \le x \le 3, \text{(fifty)} \\ u_{43} (2, y) = 0, u_{43} (1, y) = 0, 0 \le y \le 1. \end{cases}$$

Using the continuation method, we find solutions to problems (48)-(50). They look like

$$u_{41}(x, y) = \frac{1}{2} [T_3(x + y) + T_3(x - y)], (51)$$

$$u_{42}(x,y) = \frac{1}{2} \int_{0}^{x+y} N_3(t) dt$$
, (52)

$$u_{43}(x,y) = -\frac{1}{2} \int_{0}^{y} e^{-c\eta} d\eta \int_{x-y+\eta}^{x+y-\eta} \Omega_{4}(\xi-\eta) d\xi, \quad (53)$$

where

$$T_{3}(x) = \begin{cases} 2\varphi_{1}(x-2) - \tau_{3}(4-x), & 2 \le x \le 3, \\ \tau_{3}(x), & 1 \le x \le 2, \\ 2\tau_{5}(1-x) - \tau_{3}(2-x), & 0 \le x \le 1; \end{cases}$$

$$N_{3}(x) = \begin{cases} -v_{3}(2-x), & 0 \le x \le 1, \\ v_{3}(x), & 1 \le x \le 2, \end{cases}$$

a $\Omega_4(x)$ is defined as follows: in the interval $1 \le x \le 2$ it has the form $\Omega_4(x) = \omega_2(x)$, and in the intervals $0 \le x \le 1$ and $2 \le x \le 3$ it is unknown.

The first two conditions of problem (50) are satisfied automatically. Satisfying the third condition of problem (50), we find

$$\Omega_4 (2+y) = -\omega_2 (2-y) + 2\omega_2' (2-y) \int_0^y e^{-c\eta} d\eta$$
. (54)

Assuming in (53) $x \rightarrow 1$, after some transformations, we have

$$2\Omega_4 (1-y) \int_{0}^{y} e^{-c\eta} d\eta = -\int_{1-y}^{1+y} e^{-\frac{c}{2}(1+y-z)} \Omega_4 (z) dz.$$
 (55)

Vol. 10, Issue 12, Dec. (2022)

Substituting (51), (52), and (53) into (47), we have

$$u_{4}(x,y) = \frac{1}{2} \left[T_{3}(x+y) + T_{3}(x-y) \right] + \frac{1}{2} \int_{x-y}^{x+y} N_{3}(t) dt - \frac{1}{2} \int_{0}^{y} e^{-c\eta} d\eta \int_{x-y+\eta}^{x+y-\eta} \Omega_{4}(\xi-\eta) d\xi.$$
 (56)

Differentiating this solution with respect to x, we have

$$u_{4x}(x,y) = \frac{1}{2} \left[T_3'(x+y) + T_3'(x-y) \right] + \frac{1}{2} \left[N_3(x+y) - N_3(x-y) \right] - \frac{1}{2} \left[N$$

$$-\frac{1}{2}\int_{0}^{y}e^{-c\eta}\left[\Omega_{4}(x+y-2\eta)-\Omega_{4}(x-y)\right]d\eta.$$
 (57)

Putting in $(57) x \rightarrow 1$ taking into account equalities (46) and (55), after some calculations and transformations, we arrive at the relation

$$v_{5}(y) = -\frac{1}{2}\tau'_{5}(y) - \frac{c+2}{4}\int_{0}^{y} e^{-\frac{c}{2}(y-\eta)}\tau'_{5}(\eta)d\eta + \beta_{2}(y), \ 0 \le y \le 1, \ (58)$$

where

$$\beta_1(y) = \tau_3'(1+y) + \nu_3(1+y) - \frac{1}{2} \int_0^y e^{-\frac{c}{2}(1+y-\eta)} \omega_2(\eta) d\eta -$$

$$-\frac{1}{2}\int_{0}^{y}e^{-\frac{c}{2}(y+\eta)}\overline{\omega_{1}}(1-\eta)d\eta-\frac{1}{2}e^{\frac{c}{2}y}v_{3}(1).$$

Now let's move on to the area D_1 . Passing in equation (18) to the limit at $y \to 0$, we find

$$\overline{\omega_1}(x) = \tau_1''(x) - \nu_1(x), \quad 0 \le x \le 1,$$

where $\tau_1(x)$ and $\nu_1(x)$ are known functions.

Further, the solution of Eq. (18), which satisfies conditions (9) for $0 \le x \le 1$, (12), and (15), is written as

$$u_{1}(x,y) = \int_{0}^{y} \tau_{4}(\eta) G_{\xi}(x,y;0,\eta) d\eta - \int_{0}^{y} \tau_{5}(\eta) G_{\xi}(x,y;1,\eta) d\eta + \int_{0}^{1} \tau_{1}(\xi) G(x,y;\xi,0) d\xi - \int_{0}^{y} \tau_{4}(\eta) G_{\xi}(x,y;0,\eta) d\eta + \int_{0}^{1} \tau_{1}(\xi) G(x,y;\xi,0) d\xi - \int_{0}^{y} \tau_{4}(\eta) G_{\xi}(x,y;0,\eta) d\eta + \int_{0}^{1} \tau_{1}(\xi) G(x,y;\xi,0) d\xi - \int_{0}^{y} \tau_{4}(\eta) G_{\xi}(x,y;0,\eta) d\eta + \int_{0}^{1} \tau_{1}(\xi) G(x,y;\xi,0) d\xi - \int_{0}^{y} \tau_{4}(\eta) G_{\xi}(x,y;0,\eta) d\eta + \int_{0}^{1} \tau_{1}(\xi) G(x,y;\xi,0) d\xi - \int_{0}^{y} \tau_{4}(\eta) G_{\xi}(x,y;0,\eta) d\eta + \int_{0}^{y} \tau_{4}(\eta) d\eta + \int_{0}^{y} \tau_{4}(\eta) d\eta + \int_{0}^{y} \tau_{4$$

$$-\int_{0}^{y}e^{-c\eta}d\eta\int_{0}^{\eta}\overline{\omega_{1}}(\xi-\eta)G(x,y;\xi,\eta)d\xi-\int_{0}^{y}e^{-c\eta}d\eta\int_{\eta}^{1}\overline{\omega_{1}}(\xi-\eta)G(x,y;\xi,\eta)d\xi.$$

Differentiating this solution with respect to x and tending x to zero and one, we obtain two more relations between the unknown functions $\tau_4(y)$, $\nu_4(y)$, $\tau_5(y)$ and $\nu_5(y)$. From these obtained two relations and (45), (58), after lengthy calculations, we arrive at a system of two Volterra integral equations of the second kind for unknown functions $\tau'_4(y)$ and $\tau'_5(y)$:

$$\tau_{4}'(y) + \int_{0}^{y} K_{1}(y,\eta)\tau_{4}'(\eta)d\eta + \int_{0}^{y} K_{2}(y,\eta)\tau_{5}'(\eta)d\eta = g_{1}(y), \ 0 \le y \le 1, (59)$$

$$\tau_{5}'(y) + \int_{0}^{y} K_{3}(y,\eta)\tau_{5}'(\eta)d\eta + \int_{0}^{y} K_{4}(y,\eta)\tau_{4}'(\eta)d\eta = g_{2}(y), \ 0 \le y \le 1, (60)$$

where $K_1(y,\eta)$, $K_2(y,\eta)$, $K_3(y,\eta)$, $K_4(y,\eta)$ and $g_1(y)$, $g_2(y)$ well-known functions $K_1(y,\eta)$ and $K_3(y,\eta)$ have a weak singularity (of order 1/2), the functions

 $K_2(y,\eta)$, $K_4(y,\eta)$, $g_1(y)$ and $g_2(y)$ - are continuous, and

$$\frac{G(x, y; \xi, \eta)}{N(x, y; \xi, \eta)} = \frac{1}{2\sqrt{\pi(y - \eta)}} \sum_{n = -\infty}^{+\infty} \left\{ \exp\left[-\frac{(x - \xi - 2n)^2}{4(y - \eta)}\right] \mp \exp\left[-\frac{(x + \xi - 2n)^2}{4(y - \eta)}\right] \right\}$$

- Green's functions of the first and second boundary value problems for the Fourier equation . Solving the system of equations (59), (60), we find the functions $\tau_4'(y)$, $\tau_5'(y)$ and thus the functions $\nu_4(y)$, $\nu_5(y)$, $\overline{\omega_1}(-y)$, $\Omega_4(1-y)$, $T_2(x)$, $T_3(x)$, $N_2(x)$, $N_3(x)$, $u_1(x,y)$, $u_3(x,y)$.

LITERATURE

- 1. Dzhuraev T.D., Sopuev A., Mamazhanov M. Boundary value problems for equations of parabolic-hyperbolic type. Tashkent, Fan, 1986, 220 p.
- 2. Dzhuraev T.D., Mamazhanov M. Boundary Value Problems for a Class of Mixed Type Fourth-Order Equations. Differential Equations, 1986, v. 22, No. 1, pp. 25-31.
- 3. Takhirov Zh.O. Boundary Value Problems for a Mixed Parabolic-Hyperbolic Equation with Known and Unknown Separation Lines. Abstract of Ph.D. thesis. Tashkent, 1988.
- 4. Berdyshev A.S. Boundary Value Problems and Their Spectral Properties for an Equation of Mixed Parabolic-Hyperbolic and Mixed-Composite Types. Almaty, 2015, 224
- 5. Mamazhanov M., Mamazhonov S.M. Statement and method of investigation of some boundary value problems for one class of fourth-order equations of parabolic-hyperbolic type. Vestnik KRAUNTS. Phys-Math. science. 2014. No. 1 (8). pp.14-19.
- 6. Mamazhanov M., Shermatova H.M., Mukhtorova T.N. On a Boundary Value Problem for a Third-Order Parabolic-Hyperbolic Equation in a Concave Hexagonal Domain. XIII Belarusian Mathematical Conference: Proceedings of the International Scientific Conference, Minsk, November 22–25, 2021: in 2 hours / comp. V. V. Lepin; National Academy of Sciences of Belarus, Institute of Mathematics, Belarusian State University. Minsk: Belarusian Science, 2021. Part 1. 135 p.
- 7. Mamazhanov M., Shermatova H.M. On some boundary value problems for a class of third-order equations of parabolic-hyperbolic type in a triangular domain with three lines of type change. Namangan Davlat university and ilmiy abborotnomashi. Namangan, 2022, 2-son, 41-51 betlar.
- 8. Abdikarimov, Rustamxon A., Mukhsin M. Mansurov, and Ummatali Y. Akbarov. "Numerical study of a flutter of a viscoelastic rigidly clamped rod with regard to the physical and aerodynamic nonlinearities." VESTNIK RGGU 3 (2019): 95.
- 9. Abdikarimov, Rustamkhon A., Mukhsin M. Mansurov, and Ummatali Y. Akbarov. "Numerical study of the flutter of a viscoelastic rigidly clamped rod, taking into account the physical and aerodynamic nonlinearities." Bulletin of the Russian State University for the Humanities. Series: Informatics. Information Security. Mathematics 3 (2019): 94-107.
- 10. Abdikarimov, Rustamxon A., Mukhsin M. Mansurov, and Ummatali Y. Akbarov. "Numerical study of a flutter of a viscoelastic rigidly clamped rod with regard to the physical and aerodynamic nonlinearities." VESTNIK RGGU 3 (2019): 95.

GALAXY INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL (GIIRJ) ISSN (E): 2347-6915 Vol. 10, Issue 12, Dec. (2022)

- 11. Abdikarimov, Rustamxon A., Mukhsin M. Mansurov, and Ummatali Y. Akbarov. "Numerical study of a flutter of a viscoelastic rigidly clamped rod with regard to the physical and aerodynamic nonlinearities." VESTNIK RSUH 3 (2019): 95.
- 12. Akbarov, U. Y., and F. B. Badalov. "Eshmatov X. Stability of viscoelastic rods under dynamic loading." Appl. fur. and those. 4 (1992): 20-22.
- 13. Aroev, Dilshod Davronovich. "ON OPTIMIZATION OF PARAMETERS OF THE OBJECT CONTROL FUNCTION DESCRIBEED BY A SYSTEM OF DIFFERENTIAL-DIFFERENCE EQUATIONS." Scientific research of young scientists . 2020.
- 14. Aroev, D. D. "ON CHECKING THE STABILITY OF MOVEMENT OF INDUSTRIAL ROBOTS THAT BELONG TO THE CLASS OF COORDINATE DELAY." The current stage of world scientific development (2019): 3-7.
- 15. Khusanbaev, Ya. M., and Kh. K. Zhumakulov. "On the convergence of almost critical branching processes with immigration to a deterministic process." O'ZBEKISTON MATEMATIKA JURNALI (2017): 142.