

GALAXY INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL (GIIRJ)
ISSN (E): 2347-6915

Vol. 10, Issue 12, Dec. (2022)

318

MINIMUM PROGRAM GRAPH COVERAGE ALGORITHM

M. M. Aripov

Associate Professor of the Department of Informatics,

Kokand State Pedagogical Institute

ANATATSION

Structural methods for program testing are described, such as branch testing, program

verification, symbolic testing, and generating structural tests. An algorithm for the minimum

coverage of the program graph based on the packing adjacency matrix and a specific example

of the minimum coverage of the program graph are given.

Keywords: testing, program graph, minimum program graph coverage, packed adjacency

matrix, DD-paths, vertex, branches, g-graph, h-graph, algorithm complexity.

INTRODUCTION

Testing - checking the operation of the program based on the results of its execution on specially

selected sets of initial data - tests. The program can be tested either completely (full testing) or

selectively (selective testing) at individual points in the source data space. With random testing,

the reliability of a program cannot be fully guaranteed. If tests are offered by the programmer,

then they can cover only those parts of the program with which the programmer is most

familiar. Therefore, many hidden errors may remain undetected. Full testing on all possible

input sets of the program or even testing of all paths in the program structure is unrealistic,

since the number of tests will be unacceptably large. For example, if the number of inputs is

ten and each input of the program can take on ten values, the number of elementary tests

required to complete the test would be 1010.

Branch testing. A more stringent requirement is that the chosen paths must span all branches

of the program structure, or all branches across the board (dynamic testing or branch testing).

This approach ensures that all statements and all branches are tested once. Experience shows

that a significant number of errors arise due to inaccuracies in the formulation of exit conditions

from loops, so it is proposed to introduce an additional requirement that each loop be tested by

two tests, one of which would lead to the execution of the loop with a return, and the other

would go through the loop without return.

Program verification. Any testing using numerical sets of initial data allows you to check the

program only in a limited number of points in the space of initial data, so more general methods

are of greatest interest. This includes, first of all, the verification of programs - the proof of their

correctness using mathematical methods for proving theorems. To do this, the program is

presented as a sequence of more or less simple statements, the proof of which is not difficult.

This process can be automated, but practical results in this direction are still insignificant. The

fact is that the proof of even relatively simple statements is a procedure that requires high

qualifications and is subject to automation only in some rare cases. Due to the great complexity

of the proof, errors are possible here, which from a practical point of view, despite the apparent

GALAXY INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL (GIIRJ)
ISSN (E): 2347-6915

Vol. 10, Issue 12, Dec. (2022)

319

rigor, lead to the fact that the verification method cannot guarantee the complete reliability of

the verified program.

Symbolic testing. In contrast to verification, program testing consists in checking the

correctness of the numerical results of program operation with specially selected values of input

variables - test sets. In some cases, testing can also be done symbolically - by executing

procedures based on symbolic inputs (notations of input variables that allow expressing

program outputs also in symbolic form). Different symbolic inputs and outputs correspond to

different program paths. If there are a limited number of such paths, then symbolic execution

can be used to validate the program using symbolic input and output expressions. The

advantage of symbolic testing over numerical testing is that if a numerical test allows you to

check the operation of a program on individual numerical values of input sets, then symbolic

testing operates on sets of initial data determined by constraints. Symbolic expressions of

program paths can be obtained either by forward substitution or by back substitution. Direct

substitution corresponds to the actions performed when implementing a certain path in the

program structure. With direct substitution, symbolic execution is carried out for each

executable statement with storage of intermediate symbolic expressions of variables. In the case

of back substitution, restrictions on the input variables are built "from the bottom up" when

passing the path on the program graph in the opposite direction. As a result, the same

restrictions are obtained as in direct substitution. However, with back substitution, no memory

is needed to remember the symbolic records of variables. But with direct substitution, there is

the possibility of early detection of unfeasible paths with conflicting constraints on the initial

data. In symbolic testing, cyclic sections of the program present a certain difficulty, since in this

case the number of iterations is unknown. The problem can most simply be overcome by

substituting some pre-estimated number of iterations. However, in this case, the resulting

restrictions may not be accurate. The second difficulty is related to the presence of modules in

the program. The latter is overcome by the symbolic execution of the modules encountered on

the given path. The third difficulty is related to the symbolic execution of data arrays. The fact

is that in some cases the value of the variable is set only during the execution of the program.

This difficulty can be overcome by introducing additional (hypothetical) restrictions

corresponding to various possible cases.

Generation of structural tests. The shortcomings mentioned above are devoid of structural

testing of programs on specific numerical initial data [1-,3]. Test generation consists in choosing

a set of paths that completely cover the program graph, and in determining the test data on

which these paths are executed. A program graph (control graph) is a structural model of a

program that shows the relationship between its elements. The vertices of the graph represent

the branching and union operators, and the arcs represent the data processing and

transmission operators. The graph is represented as a packed adjacency matrix (PAM). The

packed adjacency matrix A = { aij} of a graph with v vertices is a (v x l) matrix (l is the

maximum exit degree of the i-th vertex). The degree of entry dinp(vi) and exit dout(vi) of some

vertex of the graph means, respectively, the number of incoming and outgoing arcs from the

vertices. Each row i of the PAM is filled in random order with the numbers of vertices that are

GALAXY INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL (GIIRJ)
ISSN (E): 2347-6915

Vol. 10, Issue 12, Dec. (2022)

320

adjacent to vertex i. The representation of graphs in the form of PAM has the following

advantages over other existing representations: for large graphs, the number of columns of PAM

is much less than the number of columns of the corresponding adjacency matrix; it is relatively

easy to model the process of moving along the graph to build paths; reduces graph processing

time. The test criterion is the criterion of branches, where a program branch is understood as a

certain sequence of statements that are executed strictly one after another. Thus, a branch is a

linear section of a program. To construct the minimum coverage, the graph is divided into DD-

paths using the CMS of the original graph. The set of vertices with output degree dout(vi)>1,

input and output vertices are denoted as D-vertices. Then a DD-path is a simple path between

two D-vertices, such that there are no D-vertices within its boundaries. Then the cycles and

loops are determined and the arcs closing them are excluded.

The proposed algorithm for constructing a minimum cover (MPOC) of a graph consists of the

following steps.

Stage 1. The vertex i is looked through and the adjacent vertex j is determined, the number of

which is the maximum among the numbers of adjacent vertices, where i Є { l , n -1;} n is the

number of graph vertices.

Fig. 1. An example of a program graph

Stage 2. The arc (vi, vj) is viewed. If dinp (vi) > 1 and dout(vj) >1 , then the arc g(vi,vj) is excluded.

If dout (vi) > 1 and dinp (vj) = 1, then the arc h(vi, vj) is marked.

Step 3. Substitute i = j and repeat steps 1-2 until j is equal to the number of the final (output)

vertex. The path is fixed as a sequence of values j.

Stage 4. If there are no arcs of type g in the constructed path, then the last arc of type h is

excluded.

Stage 5. Stages 1–2 are repeated until the constructed path contains no arcs of type g and h

An example of constructing a minimal coverage of a program graph. Let the program graph

shown in Fig. 1. Graph arcs mean a sequence of computational program operators, graph

vertices — branching and union operators. After eliminating the closing cycles of arcs (they are

tested separately), the graph in Fig. 1 is described by the following PAM:

 The first stages of the MPOC algorithm give the following results:

GALAXY INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL (GIIRJ)
ISSN (E): 2347-6915

Vol. 10, Issue 12, Dec. (2022)

321

 Stage 1. Set i = 1, j = 2. {1, 2}

 Stage 2. The arc (vi, vj) is not excluded and is not marked.

 Stage 1. Set i = 2, j = 3. {1, 2, 3}

 Stage 2. One of the arcs (v2, v3) is excluded

 Stage 1. Set i = 3, j = 10. p1 = {1, 2, 3, 10}

 Stage 2. The arc (v3, vI0) is eliminated.

 Stage 1. Set i = 3, j = 6.

Stage 2. The arcs (v6, v7), (v8, v9), (v9, vI0) are excluded, the arc

 h(v3, v6) noted.

 The procedures of stages 1–2 are repeated until the path to the final vertex of the graph

v10 corresponding to the receipt of the calculation result is determined. In this case, the first

path p1 = { l , 2, 3, 10} is determined after three steps. The following steps, repeated until there

are no arcs of type g and h in the constructed path, allow us to determine the following paths:

 р2 = {1, 2, 3, 6, 7, 8, 9, 10},

 р3 = {1. 2, 3, 4, 6, 7, 8, 9, 10},

 р4 = {1. 2, 3, 4, 6. 7, 8, 9, 10},

 р5 = {1, 2, 3, 4, 5, 10}.

To create one path in the worst case, n operations are required, and to build the minimum

number of operations, m operations are required, where m is the minimum number of paths

that cover all branches of the program graph. Therefore, the complexity of the developed

algorithm is

O(|v| x |m|) => O(|v|)

The developed algorithm is more efficient than the algorithm proposed in [5], since in this

algorithm the vertices are excluded after creating a certain path, i.e. additional time required.

REFERENCES

1. Iyudu K.A., Aripov M.M. Automating the generation of paths for testingprograms written

in Fortran. Programming, 1986, No. 7.

2. Iyudu K.A., Aripov M.M. Testing a program based on the minimum coverage of its graph.

Control systems and machines, 1985, No. 6.

3. Iyudu K.A., Aripov M.M. Automation of structural testing of programs. Republican

conference. Reliability and quality of software. Abstracts of reports. Lvov, January 29-31,

1985

4. Fundamentals creating the algebra science and algoritms / M.M.Aripov, R.N.Normatov,

I.M.Siddikov, U.Oripova // Solid state technology. 2020. Vol.63.No. 5. 6103-6111.

5. Simon C., Ntafos S., Louis Hakimi. On structured digrafs and program testing. IEEE

Trans. On Computers, vol. C-30, № 1, January 1981.

6. Shukhratovich, Shirinov Feruzjon. "The Field of Computer Graphics and Its Importance,

Role and Place in The Information Society." Texas Journal of Multidisciplinary Studies 4

(2022): 86-88.

7. Tokhirovna, Khakimova Yoqutkhon. "Stages Of Implementation Of Distance Learning In

Higher Education." Texas Journal of Philology, Culture and History 1 (2021): 38-39.

GALAXY INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL (GIIRJ)
ISSN (E): 2347-6915

Vol. 10, Issue 12, Dec. (2022)

322

8. Хонбобоев, Хакимжон Октамович, Мубина Хакимжоновна Икромова, and Мухаммад-

Анасхон Хакимжонович Икромов. "Ta’limda axbоrоt texnоlоgiyalarni qollashning oziga

xоs xususiyatlari." Молодой ученый 3-1 (2016): 21-22.

9. Хонбобоев, Хакимжон Октамович, Фозилжон Усибхонович Полатов, and Мухаммад-

Анасхон Хакимжонович Икромов. "Tasviriy san’atni oqitishda interfaоl metоdlardan

fоydalanish." Молодой ученый 3-1 (2016): 22-23.

10. Khaidarova, S. "Sql-expressions That Manage Transactions." JournalNX: 307-310.

11. Siddiqov, I. M. "THE IMPORTANCE OF USING THE ACT IN THE PROCESS OF

DEVELOPMENT OF PRESCHOOL CHILDREN." Экономика и социум 5-1 (2021): 458-

461.

12. Muydinovich, Rasulov Inom. "The Role of Digital Technologies in Growing Secondary School

Students to the Profession." Eurasian Scientific Herald 6 (2022): 137-142.

13. Muydinovich, Rasulov Inom. "The Role of Digital Technologies in Growing Secondary School

Students to the Profession." Eurasian Scientific Herald 6 (2022): 137-142.

14. Normatov, R. N., M. M. Aripov, and I. M. Siddikov. "Some issues of analysis structural

complex systems." International Journal on Orange Technologies 3.2 (2021): 59-62.

15. Juraev, M. M. (2022). Prospects for the development of professional training of students of

professional educational institutions using electronic educational resources in the

environment of digital transformation. Academicia Globe: Inderscience Research, 3(10),

158-162.

16. Toshpulatov, Raximjon I. "MODERN METHODS AND TENDENCIES IN TEACHING

INFORMATION TECHNOLOGY." International Journal of Pedagogics 2.09 (2022): 43-46.

17. Йулдошев, Уткир, and Уктамжон Жуманкузиев. "Определение ведущих

педагогических закономерностей и основополагающих принципов формирования

информационной культуры детей школьного возраста." Общество и инновации 2.5/S

(2021): 68-76.

18. Marufovich, Aripov Masud, and Shirinov Feruzjon Shuxratovich. "BO ‘LAJAK

INFORMATIKA FANI O ‘QITUVCHILARINING GRAFIK AXBOROTLAR BILAN

ISHLASH KOMPETENSIYASINI RIVOJLANTIRISH." TA'LIM VA RIVOJLANISH

TAHLILI ONLAYN ILMIY JURNALI 2.1 (2022): 183-187.

19. Siddikov, I. M., and Sheraliev O. Sh. "ABOUT ONE INNOVATION METHOD OF

LOCALIZATION OF INDEPENDENT DIGITAL DEVICES." E-Conference Globe. 2021.

20. Shirinov F., Mamasoliyev A. A GENERAL DESCRIPTION OF THE HARDWARE AND

SOFTWARE ENVIRONMENT USED TO ORGANIZE COMPUTER-BASED LEARNING

PROCESSES //Euro-Asia Conferences. – 2021. – Т. 3. – №. 1. – С. 63-65.

21. Normatov, R. N., M. M. Aripov, and I. M. Siddikov. "Analysis Method of Structural-complex

System Indicators by Decomposition Into Subsystems." JournalNX 7.04 (2021): 68-71.

22. Marufovich, Aripov Masud, and Shirinov Feruzjon Shuxratovich. "BO ‘LAJAK

INFORMATIKA FANI O ‘QITUVCHILARINING GRAFIK AXBOROTLAR BILAN

ISHLASH KOMPETENSIYASINI RIVOJLANTIRISH." TA'LIM VA RIVOJLANISH

TAHLILI ONLAYN ILMIY JURNALI 2.1 (2022): 183-187.

