CONDITIONS FOR THE CONVERGENCE OF BRANCHING PROCESSES WITH IMMIGRATION STARTING FROM A LARGE NUMBER OF PARTICLES

H. K. Zhumakulov

Ph. D., Associate Professor of Kokand State Pedagogical Institute

A. Ergashev
 Kokand SPI

ANNOTATION

In this section, we study sufficient conditions for the convergence of a sequence of almost critical Galton -Watson branching processes with uniform immigration starting from a large number of particles.

Keywords ; Galton -Watson, branching processes, almost critical, random process, Skorokhod spaces
Let for everyone $n \in \mathbf{N}\left\{\xi_{k, j}^{(n)}, k, j \in \mathbf{N}\right\}$ and $\left\{\varepsilon_{k}^{(n)}, k \in \mathbf{N}\right\}$ are two independent sets of independent, non-negative, integer- valued and identically distributed random variables. For each $n \in \mathbf{N}$, we define the process by the $\left\{X_{k}^{(n)}, k \in \mathbf{N}_{0}\right\}$ following recursive relations

$$
X_{0}^{(n)}=0, X_{k}^{(n)}=\sum_{j=1}^{X_{k-1}^{(n)}} \xi_{k, j}^{(n)}+\varepsilon_{k}^{(n)}, \quad k \in \mathbf{N} . \text { (one) }
$$

If we interpret the value $\xi_{k, j}^{(n)}$ as the number of descendants of the j -th particle in the -th $k-1$ generation, and the value $\varepsilon_{k}^{(n)}$ - as the number of particles immigrating into the population in the k -th generation, then the value $X_{k}^{(n)}$ is the number of particles in the population in the k th generation. Due to this interpretation, process (1) is called the Galton -Watson branching process with immigration.
Let us assume that the values

$$
m_{n}=E \xi_{1,1}^{(n)}, \lambda_{n}=E \varepsilon_{1}^{(n)}, \sigma_{n}^{2}=D \xi_{1,1}^{(n)} \text { and } b_{n}^{2}=D \varepsilon_{1}^{(n)}
$$

are finite for everyone $n \in \mathbf{N}$. Process (1) is called subcritical, critical and supercritical if $m_{n}<1, m_{n}=1, m_{n}>1$, respectively. If $m_{n} \rightarrow 1$ for $n \rightarrow \infty$, then the sequence (1) is called almost critical.

Let, for each, be $n \in \mathbf{N} \eta_{0}^{(n)}$ - a positive integer random variable, $\left\{\xi_{k, j}^{(n)}, k, j \in \mathbf{N}\right\}$ and $\left\{\varepsilon_{k}^{(n)}, k \in \mathbf{N}\right\}$ be two mutually independent collections of identically distributed, non-negative, integer- valued random variables that do not depend on $\eta_{0}^{(n)}$.

For each $n \in \mathbf{N}$ process $\left\{X_{k}^{(n)}, k \in \mathbf{N}_{0}\right\}$, we define it as follows:

$$
X_{0}^{(n)}=\eta_{0}^{(n)}, X_{k}^{(n)}=\sum_{j=1}^{X_{k-1}^{(n)}} \xi_{k, j}^{(n)}+\varepsilon_{k}^{(n)}, k \in \mathbf{N}
$$

assume the existence of second moments of the quantities $X_{0}^{(n)}, \xi_{k, j}^{(n)}, \varepsilon_{k}^{(n)}$ and keep the same notation for the means and variances of the quantities $\xi_{k, j}^{(n)}$ and $\varepsilon_{k}^{(n)}$ as at the beginning of \S Next, we define a step process $X_{n}(t)$ as an element of the Skorokhod space $D[0, T]$, setting $X_{n}(t)=X_{[n t]}^{(n)}, t \geq 0$, where [a] means the integer part of the number a. In what follows, the sign \xrightarrow{D} will mean weak convergence in the Skorokhod topology (see [1]).
The following theorem gives an idea of the asymptotic behavior of the process $X_{n}(t), t \geq 0$ for $n \rightarrow \infty$ in the case when $X_{0}^{(n)} \xrightarrow{\mathrm{P}} \infty$ (at the beginning there are "many" particles) and $m_{n} \rightarrow 1$ for $n \rightarrow \infty$ (almost the critical case).

Theorem . Let $m_{n}=1+\frac{\alpha}{d_{n}}+o\left(\frac{1}{d_{n}}\right)$, where $\alpha \in R$ and d_{n} be some sequence of positive numbers such that $\beta_{n}=n d_{n}^{-1} \rightarrow \beta<\infty$ for $n \rightarrow \infty$. Let $\gamma>0$ the following conditions be satisfied for some: $n^{1-\gamma} \lambda_{n} \rightarrow \lambda$ and $n^{1-\gamma} b_{n}^{2} \rightarrow b^{2}, n^{1-\gamma} \sigma_{n}^{2} \rightarrow 0, n^{-\gamma} X_{0}^{(n)} \xrightarrow{P} X_{0}$ for $n \rightarrow \infty, \varlimsup_{n \rightarrow \infty} n^{-\gamma} E X_{0}^{(n)}<\infty$ and $E X_{0}<\infty$. Then for any $T>0$

$$
\frac{X_{n}(t)}{n^{\gamma}} \xrightarrow{D} \eta(t), t \in[0, T] \text { at } n \rightarrow \infty
$$

where the limiting random process $\eta(t)$ has the following form

$$
\eta(t)= \begin{cases}X_{0} e^{\alpha \beta t}+\frac{\lambda}{\alpha \beta}\left(e^{\alpha \beta t}-1\right), & \text { если } \alpha \beta \neq 0, \\ X_{0}+\lambda t, & \text { если } \alpha \beta=0 .\end{cases}
$$

Proof of the theorem. We represent the value $X_{k+1}^{(n)}$ in the form

$$
X_{k+1}^{(n)}=X_{k}^{(n)}+\left(m_{n}-1\right) X_{k}^{(n)}+\lambda_{n}+M_{k}^{(n)}
$$

where $M_{k}^{(n)}=\sum_{j=1}^{X_{k}^{(n)}}\left(\xi_{k, j}^{(n)}-m_{n}\right)+\varepsilon_{k+1}^{(n)}-\lambda_{n}$. Obviously, this $M_{k}^{(n)}, k \in \mathbf{N}_{0}$ forms a squareintegrable martingale difference with respect to the flow of σ-algebras $F_{k}^{(n)}$ $=\sigma\left\{X_{0}^{(n)}, X_{1}^{(n)}, \cdots, X_{k}^{(n)}\right\}$. Let $\eta_{n k}=\frac{X_{k}^{(n)}}{n^{\gamma}}$. Then from (2) we have

$$
\begin{equation*}
\eta_{n 0}=\frac{X_{0}^{(n)}}{n^{\gamma}}, \eta_{n k+1}=\eta_{n k}+\left(n\left(m_{n}-1\right) \eta_{n k}+\lambda_{n} n^{1-\gamma}\right) \cdot \frac{1}{n}+\frac{1}{n^{\gamma}} M_{k}^{(n)} \tag{3}
\end{equation*}
$$

It is easy to verify that

$$
E X_{k}^{(n)}=m_{n}^{k} E X_{0}^{(n)}+\frac{m_{n}^{k}-1}{m_{n}-1} \lambda_{n} .(\text { four })
$$

Further, applying Doob's inequality for martingales, we have

$$
\begin{gathered}
I_{n}=P\left(\sup _{0 \leq t \leq T}\left|\frac{1}{n^{\gamma}} \sum_{k=0}^{[n t]} M_{k}^{(n)}\right|>\varepsilon\right) \leq \varepsilon^{-2} n^{-2 \gamma} E\left(\sum_{k=0}^{[n T]} M_{k}^{(n)}\right)^{2}= \\
=\varepsilon^{-2} n^{-2 \gamma}\left(\sigma_{n}^{2} \sum_{k=0}^{[n T]} E X_{k}^{(n)}+[n T] b_{n}^{2}\right)
\end{gathered}
$$

for any $\varepsilon>0$. From here and from (4), after simple calculations, we obtain the estimate

$$
\begin{equation*}
I_{n} \leq \varepsilon^{-2} n^{-2 \gamma}\left(\sigma_{n}^{2} \frac{m_{n}^{[n T]+1}-1}{m_{n}-1} E X_{0}^{(n)}+\frac{\lambda_{n} \sigma_{n}^{2}}{m_{n}-1}\left(\frac{m_{n}^{[n T]+1}-1}{m_{n}-1}-[n T]\right)+[n T] b_{n}^{2}\right) \tag{5}
\end{equation*}
$$

Obviously, if $\beta \neq 0$, then

$$
m_{n}^{n} \rightarrow e^{\alpha \beta} \text { at } n \rightarrow \infty .
$$

Then from (5) we have

$$
\begin{aligned}
& I_{n} \leq \varepsilon^{-2} \alpha^{-1}\left(n^{1-\gamma} \sigma_{n}^{2} \beta_{n}^{-1}\left(e^{\alpha \beta T}-1\right) E \frac{X_{0}^{(n)}}{n^{\gamma}}+\right. \\
& +n^{1-\gamma} \lambda_{n} n^{1-\gamma} \sigma_{n}^{2} \beta_{n}^{-1}\left(\alpha \beta_{n}^{-1}\left(e^{\alpha \beta T}-1\right)-T\right)+ \\
& \left.\quad+\alpha n^{1-2 \gamma} b_{n}^{2} T\right)+o(1)
\end{aligned}
$$

If $\beta=0$, then

$$
m_{n}^{n}=1+\alpha \beta_{n}+o\left(\beta_{n}\right)
$$

and from (5) it follows that

$$
I_{n} \leq \varepsilon^{-2}\left(n^{1-\gamma} \sigma_{n}^{2} E \frac{X_{0}^{(n)}}{n^{\gamma}}+n^{1-\gamma} \lambda_{n} n^{1-\gamma} \sigma_{n}^{2}+n^{1-2 \gamma} b_{n}^{2}\right)
$$

Then, taking into account the conditions of the theorem, we obtain that

$$
I_{n} \rightarrow 0 \text { at } n \rightarrow \infty .
$$

Now, applying Theorem 3.1 from [2] and taking into account the last relations, we obtain

$$
\max _{1 \leq k \leq n T}\left|\eta_{n k}-Z_{n k}\right| \xrightarrow{P} 0 \text { at } n \rightarrow \infty
$$

where the quantities $Z_{n k}$ are determined by the recursive relations

$$
Z_{n 0}=\frac{X_{0}^{(n)}}{n^{\gamma}}, Z_{n k+1}=Z_{n k}+\left(\alpha d_{n}^{-1} Z_{n k}+\lambda_{n} n^{1-\gamma}\right) \cdot \frac{1}{n} .
$$

Further, applying Theorem 3.2 from [2], we have

$$
\sup _{0 \leq t \leq T}\left|Z_{n}(t)-\eta(t)\right|=\max _{1 \leq k \leq n T}\left|Z_{n k}-\eta\left(\frac{k}{n}\right)\right| \xrightarrow{P} 0
$$

for $n \rightarrow \infty$, where $Z_{n}(t)=Z_{n[n t]}$, the process $\eta(t)$ is a solution of the differential equation

$$
d \eta(t)=(\lambda+\alpha \beta \eta(t)) d t
$$

with initial condition $\eta(0)=X_{0}$. From here and (6) it follows that

$$
\sup _{0 \leq t \leq T}\left|\frac{X_{n}(t)}{n^{\gamma}}-\eta(t)\right| \leq \max _{1 \leq k \leq n T}\left|\eta_{n k}-Z_{n k}\right|-\max _{1 \leq k \leq n T}\left|Z_{n k}-\eta\left(\frac{k}{n}\right)\right| \xrightarrow{P} 0
$$

for $n \rightarrow \infty$, which was to be proved. The proof of the theorem is complete.

LITERATURE

1. Gikhman I.I., Skorokhod A.V. Theory of random processes. In 3 vols. -M.: Nauka, 1973. Vol.3. -496 S.
2. Anisimov V.V., Lebedev E.A. Stochastic queuing networks. Markov models. - Kiev, "Li bi d " 1992. -207 p.
3. Formanov, Sh K., and Sh Juraev . "On Transient Phenomena in Branching Random Processes with Discrete Time." Lobachevskii Journal of Mathematics 42.12 (2021): 2777-2784.
4. Khusanbaev, Ya. M., Kh. K. Zhumakulov. "On the convergence of almost critical branching processes with immigration to a deterministic process." O'ZBEKISTON MATEMATIKA JURNALI (2017): 142.
5. Zhumakulov Kh.K. On the asymptotics of an almost critical branching process with immigration. // DAN RUz . - Tashkent, 2010. - No. 1. - S. 7-10.
6. Khusanbaev Ya.M., Zhumakulov H.K. On the asymptotic behavior of critical branching processes with immigration. // UzMJ. - Tashkent, 2017. - No. 1. - S. 146-155.
7. Khusanbaev Ya.M., Zhumakulov H.K. On the convergence of almost critical branching processes with immigration to a deterministic process. // UzMJ. - Tashkent, 2017. - No. 3. - S. 142-148.
8. Muydinjanov, Davlatjon R. "Holmgren problem for Helmholtz equation with the three singular coefficients." e-Journal of Analysis and Applied Mathematics 2019.1 (2019): 15-30.
