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ANNOTATION 

In this section, we study sufficient conditions for the convergence of a sequence of almost critical 

Galton -Watson branching processes with uniform immigration starting from a large number 

of particles. 
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Let for everyone nN   ( )
, , ,n

k j k j N and  ( ) ,n
k k N are two independent sets of 

independent, non-negative, integer- valued and identically distributed random variables. For 

each nN , we define the process by the  ( )
0,n

kX kN following recursive relations 
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If we interpret the value
( )
,
n

k j  as the number of descendants of the j -th particle in the -th 1k −

generation , and the value 
( )n
k - as the number of particles immigrating into the population in 

the k -th generation, then the value 
( )n
kX is the number of particles in the population in the k -

th generation. Due to this interpretation, process (1) is called the Galton -Watson branching 

process with immigration. 

Let us assume that the values 
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are finite for everyone nN . Process (1) is called subcritical , critical and supercritical if 

1, 1, 1n n nm m m =  , respectively. If 1nm → for n→ , then the sequence (1) is called 

almost critical. 
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Let , for each , be 
( )
0
nn  −N a positive integer random variable, 

( )
,{ , , }n

k j k j N and 

( ){ , }n
k k N be two mutually independent collections of identically distributed, non-negative, 

integer- valued random variables that do not depend on 
( )
0
n . 

For each nNprocess  ( )
0,n

kX kN , we define it as follows: 

 
( )

1
( ) ( ) ( ) ( ) ( )
0 0 ,

1

, , .

n
k

X
n n n n n

k k j k
j

X X k  
−

=

= = +  N  

 

assume the existence of second moments of the quantities 
( ) ( )
0 ,,n n

k jX  , 
( )n
k and keep the same 

notation for the means and variances of the quantities 
( )
,
n

k j and 
( )n
k as at the beginning of § 

Next, we define a step process ( )nX t as an element of the Skorokhod space [0, ]D T , setting 

( )
[ ]( ) , 0n

n ntX t X t=  , where [a] means the integer part of the number a. In what follows, the 

sign 
D

⎯⎯→will mean weak convergence in the Skorokhod topology (see [1]). 

The following theorem gives an idea of the asymptotic behavior of the process ( ), 0nX t t  for 

n→ in the case when 
( )
0
nX


⎯⎯→ (at the beginning there are "many" particles) and 

1nm → for n→ (almost the critical case). 

Theorem . Let 
1

1n

n n

m o
d d

  
= + +  

 
, where R and nd be some sequence of positive 

numbers such that 
1

n nnd −= →   for n→ . Let 0  the following conditions be 

satisfied for some: 
1

nn  − → and 
1 2 2 1 2, 0n nn b b n − −→ → , 

( )
0 0

Pnn X X− ⎯⎯→ for 

n→ , 
( )
0lim n

n
n EX−

→
  and 0EX   . Then for any 0T   
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DnX t
t t T

n
⎯⎯→  at n→ , 

 

where the limiting random process ( )t has the following form 
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0

( 1), если 0,
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Proof of the theorem. We represent the value 
( )

1
n

kX + in the form 
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 = . Then from (2) we have 
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It is easy to verify that 
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Further, applying Doob's inequality for martingales , we have 
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for any 0  . From here and from (4), after simple calculations, we obtain the estimate 
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Obviously, if 0  , then 

 

n
nm e→ at n→ . 

 

Then from (5) we have 
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If 0 = , then 
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and from (5) it follows that 
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Then, taking into account the conditions of the theorem, we obtain that 

 

0nI → at n→ . 

 

 Now, applying Theorem 3.1 from [2] and taking into account the last relations, we obtain 

 

1
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P

nk nk
k nT

Z
 

− ⎯⎯→ at n→ , (6) 

 

where the quantities nkZ are determined by the recursive relations 
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Further, applying Theorem 3.2 from [2], we have 
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for n→ , where [ ]( )n n ntZ t Z= , the process ( )t is a solution of the differential equation 

( ) ( ( ))d t t dt  = +  

with initial condition 0(0) X = . From here and (6) it follows that 
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for n→ , which was to be proved. The proof of the theorem is complete. 
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