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ANNOTATION 

This article considers the problem of self-oscillations of physically linear viscoelastic rods in a 

gas flow, taking into account linear dependencies. A statement and a method for solving the 

problem of self-oscillations of a viscoelastic cantilever rod are presented. Numerical results are 

obtained. 
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INTRODUCTION 

Accounting for the hereditary effects of deformable materials is becoming increasingly 

necessary due to the fact that in most leading branches of modern technology, various elements 

and components of modern engineering structures are often operated under different 

conditions. The widespread use of composite materials in modern technology has led to the need 

to study the problems of optimal design of thin-walled structures with viscoelastic properties. 

In this regard, the hereditary theory of viscoelasticity attracts more and more attention of 

researchers. This is evidenced by the publication in recent years of a number of scientific papers 

that reflect the latest achievements in the theory of viscoelasticity.  

The paper studies the linear flutter of a rod rigidly clamped at one end (cantilever). A one-

dimensional rod model, taking into account the variability of width and thickness, allows to 

more correctly take into account the real shape of the rod. 

 

MATHEMATICAL MODEL 

Consider the problem of self-oscillations of a linear viscoelastic rod. The relationship between 

stresses σ and strains ε will be taken as [2, 17]: 

   ( ) xx zwuumR −==−= ,,*1 1     (one) 

or 

( ) xxzwmR 1*1−−=       (2) 

where m 1 is an elastic constant, R ( t ) is the heredity kernel having weakly singular features of 

the Abel type, E is the modulus of elasticity . 

Not taking into account also the influence of aerodynamic nonlinearity, according to the one-

dimensional theory of gas, the gas pressure on the piston, the load will be taken in the form [4]: 
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Let us solve the problem of a self-oscillating process in a linear viscoelastic formulation, taking 

into account the physical and aerodynamic linearities. To this end, we construct a mathematical 

model for studying a viscoelastic rod in a gas flow, taking into account these linearities. 

In this case, accepting the hypothesis of flat sections for the bending moment, we use the 

following formula [9]: 
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(2) put in (4) and get [ 2 ]: 

( ) xxx wJRmM 21 *1−=     (5) 

where equal for beams of width b ( x ) and height h ( x ) 
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Substituting (5) into the equilibrium equation , i.e. [9] 
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and passing to dimensionless coordinates and omitting the strokes, we have 
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h 0 - the value of the height of the rod at the ends, b 0 - the value of the width of the rod at the 

ends, m 0 - the value of the mass corresponding to a single variable section of the rod. 

 

Solution method. We construct an approximate solution using the Bubnov-Galerkin method. 

We represent solution (7) in the form 


=

=
N

k

kk xtuw
1

)()(        (eight) 

where k (x) - known, basic functions satisfying the given boundary conditions, u k ( t ) - unknown 

functions of time to be determined. N is the number of terms of the series in the expansion. 

In this case, we obtain the following linear systems of ordinary integro-differential equations 



 
 

 

GALAXY INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL (GIIRJ) 
ISSN (E): 2347-6915 

Vol. 10, Issue 12, Dec. (2022) 
 

254 

( )  NituPdtuRtubtua kkikkikkikki

N

k
,1,0)()(*1)()(

1
==+−++

=
   (9) 

where 

,)()(,)()()(

1

0

1

0

 == dxxxbdxxxxFa ikkiikki   

,)()(,)()()(

1

0

1

0




=






 

= dxxxddxxxxd ikkiikki   

Integration of the linear system (4) with the Rzhanitsyn–Koltunov kernel R ( t )= A e βt t −, A 

>0, >0, 0< <1 over a wide range of changes in the physical and mechanical parameters of the 

rod, will be performed by a numerical method based on analytical transformations [ 6]. According 

to this method, the numerical values of the desired functions u k ( t l )= u k , l are found from the 

solution of the following recurrent system of linear algebraic equations 

( )   −+−++=






 
+ 

=

−

===

N

k

l

i

iliikkii

N

k

okkilkkilkilk

N

k

kiki ttAubAuatubtaub
t

a
1

1

1

,

1

,0,,

1 1

1111
)(

2
   

NiuPdueB
A

u ikki

i

i

iik

t

iikki
i ,1,

1

1

2

21

2

21 ,

1

1,, =




















+














− 

=

+−

−


      (ten) 

where 

( ) ( ) 

( ) 
.....2,1,1,2,,

2
,

2

1

1,2,
2

11
,

2
,

11
11

12
22

1

1

2

=−==


=
−−

=

−=
−−+

=


==

iiitA
t

A
iit

B

ii
iit

B
t

Btit

ii

ii





 

The calculation was carried out for various rheological parameters and rod shapes in plan. The 

calculation was made for both ideally elastic and viscoelastic rods. 

 Beam functions [10] are taken as basis functions k (x) 
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and for the initial conditions 

( ) ( ) ( ) ( ) 00,0
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ANALYSIS AND CONCLUSION 

An analysis of the results of physically linear problems given in the table shows that the critical 

velocity is determined by linear theory both in ideal elastic and viscoelastic formulations, and 

turns out to be only the upper limit of critical velocity for real structures. 

Therefore, in order to investigate its influence on the critical speed, it is necessary to set a 

certain relationship between the shape of the rod in the plan and its rigidity, mass, that is, it is 

necessary to calculate for different 1 and 2 . For this purpose, a series of rods with a trapezoid 
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shape of variable thickness is considered. Then the shape of the rod depends on the parameters 

1 and 2 , this parameter characterizes the narrowing of the rod. The value of the critical speed 

for various rods satisfying the boundary conditions is given in the table. 

From the analysis of the calculation results, it follows that the value of the critical velocity in 

the elastic state of the linear P cr.lin =67.69 and the difference with the viscous state is (at A=0.05) 

approximately 9.2% (P cr.lin =61.4 3 ). By increasing the viscosity value, the value of the critical 

speed decreases. The influence of other parameters can be seen in the table. When the 

trapezoidal shape of the wing changes due to parameters 1 and 2 , the influence of the shape 

is significant , the critical flutter velocity gets large values (Fig.03). 

The designations in the table mean: P kr.lin. - critical speed. A is the viscosity coefficient; α, β are 

rheological parameters. 

The cross section of the beam changes according to the law ;1)(;)( 21 xxhxcxb  −=−= where c=5 

. 

Table 

N BUT α β α 1 α2 _ γ P cr.lin. 

2 0.0 0.25 0.05 4.0 0.2 0.5 67.69 

2 

0.01 

0.03 

0.05 

0.08 

0.1 

0.25 0.05 4.0 0.2 0.5 

66.45 

63.94 

61.43 

57.65 

55.13 

2 0.05 

0.15 

0.35 

0.5 

0.05 4.0 0.2 0.5 

53.24 

64.51 

66.43 

2 0.05 0.25 

0.01 

0.07 

0.1 

4.0 0.2 0.5 

61.43 

61.42 

61.41 

2 0.05 0.25 0.05 

1.0 

2.0 

3.0 

0.2 0.5 

200.11 

211.50 

178.28 

2 

0.05 0.25 0.05 4.0 

0.1 

0.5 

0.8 

0.5 

64.53 

40.11 

6.01 

2 

0.05 0.25 0.05 4.0 0.2 

0.0 

1.0 

5.0 

10.0 

61 . 40 

61 . 46 

61 . 88 

62 . 54 

 

The figures show the change in the oscillation amplitude during flutter corresponding to the 

values of the critical velocity . 
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Rice. 01. A=0.0, α=0.25, h =0. 1 , β =0.05, α 1 =4.0, α 2 =0.2 

N \u003d 2, speed: P cr \ u003d 67 . 69 

 

Rice. 02. A=0.05, α=0.25, h =0. 1 , β =0.05, α 1 =4.0, α 2 =0.2 

N \u003d 2, speed: P cr \ u003d 61 . 43 

 Stem Shape Effects: 

 

Rice. 03. A=0.05, α=0.25, h =0. 1 , β =0.05, α 1 = 2 .0, α 2 =0.2 

N \u003d 2, speed: P cr \ u003d 211 . fifty 
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Rice. 13. A=0.05, α=0.25, h =0. 1 , β =0.05, α 1 =4.0, α 2 =0. 5 

N \u003d 2, speed: P cr \ u003d 40 . eleven 
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