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ABSTRACT 

The article considers boundary value problems for hypergeometric functions and their 

differential equations, problems in the integral form of hypergeometric functions. The 

hypergeometric function of Gauss, the Dalanber principle was used . 
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HYPERGEOMETRIC EQUATION 

Basic Definitions 

Type equation 

( ) ( )1 1 0x x y c a b x y aby − + − + + − =      ( 1 ) 

is called the hypergeometric equation or the Gauss equation, where a , b , c are three arbitrary 

parameters that take real or complex values. Two of them: a and bsymmetrically participate 

in the equation. 
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solution of the equation 
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looking for in the form of a power series. From this 
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1 n
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( ) ( )( )1
1 2

1 0

1 1 2n n
n n

n n

y n n A x n n A x
 

−
+ +

= =

 = + = + +  . 

 the values of these derivatives and y ( 1 ) into the equation. In this case 
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− + + +  
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( ) ( ) 1
0 0

1 1 0n n
n n

n n

c a b x n A x abA x
 

+
= =

+ − + + + − =    . 

 unknown 1A constants x , ..., , .... we use the method of uncertain coefficients, on the nA

basis of which the coefficients in front of the same levels should be set equal to zero. 
nx equating 

the common coefficients before that to zero 

( ) ( ) ( ) ( )1 11 1 1 1 0n n n n nn nA n n A n a b A c n A abA+ +− − + + − + + + + − =  

make up an equation. From this 

( )( )
( )( )1

1
n n

n a n b
A A

n c n
+

+ +
=

+ +
 

we get a recursive formula. 

 Here we 0 1A = also 0, 1, 2, ... , , ...c n − − − think that Let's determine the first 

particular nA solution of the ( ), , ,F a b c x hypergeometric equation (1) and substitute 1y the 

found values of the coefficients in line (2). In this case 

( )
( ) ( )

( ) ( )1
1

, , , 1
1

nn n

n
n n

a b
y F a b c x x

c



=

= = +  .    ( 3 ) 

Here 

( )
( )
( )

( ) ( )1 ... 1
n

a n
a a a a n

a

 +
= = + + −


, 

( )
0

1a =  1, 2, 3, ...n = , 

privately,( )1 !
n

n=  

 ( 3) is a hypergeometric series, and the function that is the sum of this series is called 

( ), , ,F a b c x a hypergeometric function . 

 According to d'Alembert's principle, 

( )( )
( )( )

1lim lim
1

n

n n
n

a n b nu
x x

u n c n

+

→ →

+ +
= =

+ +
. 

 Therefore, series (3) 1x  absolutely converges 1x  and diverges. 1x = for , if 

0c a b− −  , (3) the series is absolutely convergent, if 0c a b− −  , then it is 0c a b− − 

divergent 1x = − , 1 0c a b−  − −  and if it 1c a b− −  − exists, then it will be distant. 

 If (3 ) in the formula b c= if 

( ) ( ) ( )( ) ( ) ( )1 1 ... 1 1 !
n n

n

a
a a a a n n

n

− 
= − − − − − − + = −  

 
 

based 

( ) ( ) ( )
1

, , ; 1 1 1
n an

n

a
F a b b x x x

n


−

=

− 
= + − = − 

 
  

a binomial series is formed. 
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 If 1a = , then b c= formula (3 ) is 

( )
1

1
1, , ; 1

1

n

n

F b b x x
x



=

= + =
−

  

will look like, 1a = e b c= . the hypergeometric series becomes a geometric progression, which 

is why it is called the hypergeometric series. 

 ( 3 ) into equation (1 ) to find the second particular solution of equation (3 ) 

y x=  

we will replace. Then equation ( 1) is written in the following form: 

( ) ( ) ( )1 2 1 2x x c a b x    − + + − + + + −    

( )
( )1

0
c

ab a b
x

 
  

+ − 
− + + + − = 
 

 

was an equation like equation 0 = ( 1), or 1 c = − should be. 1 c = − Existence 

( ) ( ) ( ) ( ) 1 2 1 1 1x x c a c b c x  − + − − − + + − + + −    

( )( )1 1 0a c b c − − + − + =  

we get the 1 c = − replacement equation ( c 1 a ) bwhen y x=  

1a c− + .  1b c− + . 2 c−  

needs to be replaced. Therefore, this equation ( 1y 1) is not linearly related to 

( )1
2 1, 1,2 ;cy x F a c b c c x−= − + − + −  

will have a solution. In the same time, 2y  

2 0, 1, 2, ..., , ...c n−  − − −  

makes sense only when Thus, the general solution of equation ( 1 ) can be written in the 

following form: 

( ) ( )1
1 2, , ; 1, 1,2 ;cy C F a b c x C x F a c b c c x−= + − + − + − , 

where 1C and 2C are arbitrary constants. 

 If the hypergeometric function is symmetric and one a of b the parameters is a negative 

integer n equal to - , then the hypergeometric series (3) is interrupted and n becomes a -degree 

polynomial. 

If 1a n= − , 2b n= − , where 1 0n  , 2 0n  are integers, then the hypergeometric series becomes 

a polynomial whose degree 1n is 2n equal to the smallest of the numbers . (3 ) as a result of 

differentiating the series as follows 

( ) ( ), , ; 1, 1,c 1;
ab

F a b a x F a b x
c

= + + +  

create a formula. 

 ( 3) by 
ax , 

bx or 
1cx −
then differentiate it, then the following formulas will be obtained: 

( ) ( )1, , ; 1, , ;a ad
x F a b c x ax F a b c x

dx

−  = +  , 
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( ) ( )1, , ; , 1, ;b bd
x F a b c x bx F a b c x

dx

−  = +  ,     (4 ) 

( ) ( ) ( )1 1, , ; 1 , , 1;c ad
x F a b c x c x F a b c x

dx

− −  = − −  . 

 

Integral expression of the hypergeometric function 

 ( 3 ) line 

( )
( )
( )n

a n
a

a

 +
=


 

given equality, this 

( )
( ) ( ) ( )
( ) ( ) ( )1

, , ; 1
!

n

n

c a n b n
F a b c x x

a b c n n



=

  +  +
= + =
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  

( )
( ) ( )
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a b c c n n



+

     +  +
= + = 
    + 

  

( )
( ) ( )

( ) ( )
( )0 !

n

n

c a n b n
x

a b c n n



=

  +  +
=
   +

  

write in the form. 

 Based on formula ( 3). 

( )
( ) ( )

( )
,

b n c b
B b n c b

c n

 +  −
+ − =

 +
 

Since , the previous equality 

( )
( )

( ) ( ) ( )
( )

( )
0

, , ; ,
!

n

n

c a n
F a b c x x B b n c b

a b c b n



=

  +
= + −
   −

  

is written in the form or according to (2. 1.3 ). 

( )
( )

( ) ( ) ( )
( )

( )
1

11

0 0

, , ; 1
!

c bn n b

n

c a n
F a b c x x t t dt

a b c b n


− −+ −

=

  +
= −
   −

  . 

 how does the integral here n converge for all values 

0b  or 0c b−  ( 0c b      ( 5) 

conditions must be met. 

 This is the previous equation 
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   
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
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  −  
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write in the form. Since the sum under the integral ( )1
a

xt
−

− is an expansion into an infinite 

series of the function 

( )
( )

( ) ( )
( ) ( )

1
11

0

, , ; 1 1
c b abc

F a b c x t t xt dt
b c b

− − −−
= − −
  −

   ( 6 ) 

formula . This is an integral expression of the hypergeometric function. 

 

 ( 5 ) conditions are the same 

0a b c− −   

conditionally replaceable. If 0a  there is, 0a−  then it will be, and by adding the inequality 

of this inequality (5) with the second one, 0a b c− −  we obtain the inequality; if 0a  so, then 

from this inequality we have (5), which is stronger than the second c b a−  inequality. 

 Let us calculate the value of the hypergeometric function . Since the 1x = integral in 

formula 0b  ( 6) is a smooth approximation for 1x→ , 0c  and we pass to 1x  the limit: 

( )
( )

( ) ( )
( ) ( )

1
11

1
0

lim , , ; lim 1 1
c b ab

x l x

c
F a b c x t t xt dt

b c b

− − −−

→ →


 = − − =
   −
  

( )
( ) ( )

( ) ( )
1

11

1
0

lim 1 1
c b ab

x

c
t t xt dt

b c b

− − −−

→


 = − − =
   −

  

( )
( ) ( )

( )
( )

( ) ( )
( )

1
11

0

1 ,
c b abc c

t t dt B b c b a
b c b b c b

− − −− 
= − = − − =
  −   −

  

( )
( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )

c b c b a c c b a

b c b c a c a c b

   − −   − −
= =
  −  −  −  −

. 

 So, 

( ) ( )
( ) ( )
( ) ( )1

lim , , ; , , ;1
x

c c b a
F a b c x F a b c

c a c b→

  − −
= =

 −  −
. 

 If ( 6 ) in the integral in the formula 

1

1

s
t

xs

−
=

−
or

1

1

t
s

tx

−
=

−
 

If we make a substitution, then the integral will be written in the following form: 

( ) ( )
1

11

0

1 1
c b abt t xt dt
− − −− − − =  

( ) ( ) ( )
( )

1
11

0

1 1 1
c a b b c ac bx s s xs ds
− − − − −− −= − − − =  

( ) ( )
( )

( )
( )

( )1 , , ;
c a bb c b

x F c a c b c x
c

− −  −
= − − −


. 

 So, 
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( ) ( )
( )

( ), , ; 1 , , ;
c a b

F a b c x x F c a c b c x
− −

= − − − . 

This equality is called the auto-conversion formula. 

 

 (6 ) by replacing the variable 1t s= − by the formula in the integral 

( ) ( )
1

11

0

1 1
c a bat t xt dt
− − −− − − =  

( ) ( )
1

11

0

1 1 1
1

b
b ac a x

x s s s ds
x

−
− −− −  

= − − − 
− 

  

make up an equation. Hence, if we take into account ( 6), 

( ) ( ), , ; 1 , , ;
1

b x
F a b c x x F c a b c

x

−  
= − − 

− 
    

formula is formed. 
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