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ABSTRACT

Electronic states in multilayer semiconductor structures are theoretically investigated in the
semiclassical approximation, where one-electron wave functions of the stationary Schrédinger
equation are calculated in the presence of various types of potential, which is a slowly varying
function of the coordinate .

Wave functions and energy spectra of electrons are analyzed in linear, quadratic and other
approximations. It is shown that to fulfill the condition of finiteness of wave functions at
infinity, there are two types of energy spectrum, and both depend nonlinearly on the size
quantization number, i.e. the dimensionally quantized energy spectrum is non-equidistant.

It is determined that the energy spectrum of electrons in the potential in the quadratic, cubic
and biquadratic approximation takes discrete values and the steepness of the energy spectrum
depends on the parameters of the expansion of the potential with respect to the coordinate.

Keywords : energy spectrum, multilayer structure, Schrédinger equation, size quantization,
semiclassical approximation.

INTRODUCTION

The progress of modern microelectronics is largely determined by the study of the properties of
systems with non-uniformly distributed parameters, the development of methods for effective
theoretical analysis of such systems, the development and provision of objective methods for
controlling technological processes that allow creating semiconductor layers with desired
properties [1-4] . In this connection, below we consider the general problems of the propagation
of electron waves in a medium whose properties change only along a certain direction. The
approach is based on the use of the one-electron stationary Schréodinger equation to describe
the processes of elastic scattering and tunneling of non-interacting spinless particles under the
condition that their total energy is conserved .

The study of the electronic properties of both symmetric and asymmetric with respect to the
geometric dimensions of the layers of a semiconductor structure is relevant in connection with
the use of these structures in micro- or nanoelectronics and in other areas of solid state physics.
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In the works, the dynamic conductivity o (o) or current j(o) was calculated, i.e. system response
to external action in a semiconductor multilayer structure. The theory was created in different
models using different mathematical methods for solving the Schrédinger equation for a system
of electrons interacting with an electromagnetic field in a structure with a ¢ —shaped potential
barrier. In these papers , the problem was solved without taking into account the Bastard
condition, 1.e., the difference between the effective masses of current carriers in neighboring
layers of the structure is not taken into account .

At present, molecular beam epitaxy and other methods of modern technology make it possible
to obtain semiconductor layers with an arbitrary profile of composition change (structure with
a quantum well) to improve the characteristics of devices based on them. In this case, the
problem of electronic states reduces to the problem of behavior of a particle in potential wells of
an arbitrary shape. In particular, to create a new generation of resonant tunneling diodes and
heterolasers with separated electronic and optical confinement, structures with rectangular
size-quantized wells are used, in the center of which there is an additional energy dip.

The study of the electronic states in the above structures leads to the calculation of the one-
electron wave functions of the stationary Schrodinger equation in the semiclassical
approximation in the presence of the potential U( x), which we will consider as a slowly varying
function of the x coordinate.

Then the one-dimensional Schrédinger equation can be written as

n diy
U =Ey, 1
Tomdx (x)y =By M
where, by substitutingy (x)= exp(iS(x)/ ) and obtain the equation for the function S(x)[19]
1 ,dS(x),, i (d>S(x)
= Ry MPESVI e y(x). 2
2m( dx) 2m|  dx? (%) @)

Assuming that the system under consideration is close to the classical one in its properties, we
will look for a solution in the form of a series in powers of the Planck constant, 1.e.

s(x):so(x)+?sl(x)+(?)252(x)+... (3)
Then the general solution of equation (1) has the form

v(x)= Jﬁ GXPGJ p(x)olx}+ J% exp{—%f p(x)dx],

where p(x)= [Zm(E -U (x))]u2 , mand are E the effective mass and energy of current carriers.

(4)

In classically inaccessible energy regions, i.e. at E<U (X), the momentum of the current

carriers becomes imaginary. Then in these regions (4) takes the form

C 1 C,
X)=—2= exp(=|| ex (—— |
R ey R Rl e

Note that the accuracy of the semiclassical approximation does not allow taking into account

)| dx) + ——2= Jdx)  (5)

both terms simultaneously, and therefore, in some cases, we will not take into account the
exponentially small term in (4) and (5).
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Linear and quadratic approximation

Let us consider an isolated classical turning point at x=a, far from which the semiclassical
approximation is applicable for calculating the transparency coefficient of a potential barrier
[20]. Therefore, the solutions of the Schrédenger equation in the allowed and forbidden areas
can be found by formulas (4) - (5).

The wave function near the turning point can be found by solving the Schrédinger equation,
where the (x =a) potential energy near the turning point can be U (X) represented as

du 10U
U (x)0 U(x=a)+ax_a(x—a)+§ax2 Xal(x—a)2 (6a)
or
U(X)0U(c=0)+U!_c+U" 5>, 6b)

Then the Schrédinger equation can be written as

d? 1 ,
l/;"__(E_UO_U 06—V 6 )W 0,

d¢® E,

or

dzl// 2 7)
dg2+(ko_ko§_k2§ Jw =0, 7

whose general solution is an arbitrary linear combination of hypergeometric functions, i.e.

2
2 2k, ¢ +k 2Kk, ¢ +k
W(g):Cl.lﬁi (1_ K} B ko ]’%1( 2413/21) explg( 26 1)]+
2

4 16k3* 4k} 2 \/E

2
3 k2 k)3 (2s+k) g (2K, +k, )

+C, - F [4 16k3/2 k;/zj’i 4k23/2 (2k2g+k1 )eXp _T ,(1-68)

— 2 2
where g:x_a , E, = h — :iuézozi&(g) , kz—i " 10 U(zé') ,

a 2ma E, E. J¢ | E, E. 9" |

2m
kZ = 2 ——(E-U(x=0)).
2 2
1 K k 1 (2k2g+k1) (2k2§+k1) :

In the general case ;K ( 2 16k3/2 kg’z]’i’ e oc eXp Tj’? , which corresponds

to an exponentially growing wave function. Therefore, to choose a wave function that satisfies
the conditions of finiteness of the wave functions at infinity, i.e. satisfying this quantum
mechanical approach, there are two alternative cases:

1 k? K
1. C,#0, C,=0and ~——1->——>
! 4 16k3? 4k;’2

() iF n b (P ) p[M] o

2" A" 20

=—4n . In this case, the wave function takes the form
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and the energy spectrum of current carriers is quantized and is defined as

2
ko =(1+16n)k22 - (ten)

From (10) we obtain an expression for the size-quantized energy spectrum in the form

2

i 2
E=U(x=0)+—-——k,| (1+16n)— —L
=0 o {(“L ) 4k}

or
2
U’_
E,-U(x=0)=U’| (1+16n)- i@ : (eleven)
} 4, U’
3 K K,
2. C,#0, ¢;=0and Z—W— k1,2 =-2(2n+1). In this case, the wave function takes the form

Vona (g) =,k _n,§,M (2k2§+ k1 )explm}, 12

2" A" 20,

and the energy spectrum of current carriers is quantized and is determined by the relation:
2

UI
E,-U(x=0)=U", (11+16n)—%(u+o) : (13)
s=0

a
For a quantitative analysis of the size-quantized energy spectrum, we assume that
Ul,=& U, . Then we have an expression for the size-quantized energy spectrum in a form

convenient for quantitative calculation

L(’f,o) {(1+16n)—1} : (14)
o Ul 4

U,_ " !
where x = EZ;O , S =V /Ul

a> U

Similarly, it is easy to obtain the following expression
E,-U (x 0)
é:U ¢=0

From (11) and (13) formulas, it can be seen that to fulfill the condition of finiteness of the wave
functions at infinity, there are two types of energy spectrum, and both depend nonlinearly on

[(11+ 16n)— % x} : (fifteen)

the size quantization number, i.e. the dimensionally quantized energy spectrum is not
equidistant.
Fig . 1 aand b show the dependences of the size-quantized energy spectra, characterized by the

E,(n) -V (x=0) and £ () -U (X 0) from parameter X = Yoo

values > . It can be seen from these
gu 'Ug:o ‘fu c=0 Eaé:u
u’ — = _ —
figures that with increasing x=—_"2 values E,(n) ng 0) and E,(n) U,(X 0) s Nn=23,...
Eaé:u é:U 'Ug:O é:U 'Ug:O
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!

.. . U, . .
decreases. These energy quantities with Nn=1growth x =—=C first decreases and is reached to
a>u

a minimum, and then increases.
We note here that in quantitative calculations it is convenient to use the connection of the above
hypergeometric functions with Hermite polynomials:

H2n(42)=(—1>”%-f{—né,:zj,HM(:) a2 F( 24“)

E-UG=0) E,~U(x=0)
§L f—O §U ° U‘—;:g

n=4

n=3
U, L ""-]’I 2\:

7

1

— —n=1 D‘::O

50 100 150 200 T E &
a) b)

E(M-U(x=0) . E (n)—U(x=O) from
éu 'U;:o §U ¢=0

0750 100 150 200 TEe 0’

Fig.1 Dependences of energy quantities

!

Xx=—-2 for different values of the size quantization number, where
a>uU

U " /U
Cub1c and biquadratic approximation
Next, consider the following cubic and biquadratic terms in (6), i.e.

1 XY’ x)'
U(x):Emw2x2+53(Tj +54(Tj , (16)

where | =,|— . &;and &, are expansion coefficients U (X)in a series in X/l . The solution of
Mo

the Schrodinger equation can be done in a similar way. In this case, it passes into the

Schrédinger equation for a harmonic oscillator at &5 = 0and &, = 0. Then it can be solved using

perturbation theory [19]. In this case, the energy of particles in potential (16) in the zeroth
approximation is equal to the energy of a harmonic oscillator:

E :ha)(n+%j , (17)

and the wave function in the zero approximation has the form [19]
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ur?(x):(Z”n!lx/;)_%e_%‘szn(f), 5:?. (eighteen)

Then the calculation of the energy spectrum of electrons according to the perturbation theory
gives the following result

2
E(k,,n)= E(ka)+1ha) (n+1j—30 4 (nz + n+£j+69 i(an +2n +1)—
8 2 ho 30

ho
2
—g°| L | (34n°+51n” +59n+21} ¢, (19)
ho

where mis the effective mass of electrons, oc b OXis chosen as the size quantization axis,

& hZ
g =-2, in the spherical approximation in the energy spectrum Ek,)= (k2 +k; )

& -m
k,=0(y,2).

Figure 2 shows the dependence E [ka =0, n,(g1 / ha))] on the parameter & /fiwfor various n.

It can be seen from Fig. 2 that the energy spectrum of electrons in potential (16) takes discrete

. . &
values and the steepness of the energy spectrum is the more noticeable, the larger g = 22 and
&

1t also decreases with increasing %a) for arbitrary values of n.

Linear approximation
If we consider that U], =0then the Schrédenger equation takes the form

3;/ Sy =0, (twenty)

whose solution can be represented as a linear combination of the Airy functions of the first and

second kind
v (&)= AAi(£)+BBi(¢&), (21)
where & =(x-a)[2m(dU / dx), / #°]”* . Unknown quantities A and B,

Elk, =0.n(&5 /ho)]

4 '.; .- I — ,,'J'_::/—/’—’: ”2:4
== .;%j?/i::f/
3 e~ TR —— - n—3
I, PO o
S DI E R T N e
2 B T S e —— S
e S
1 B ————
S s /heo
01 6.02 0.06 0.1 W/

Rice. 2. Dependence E I:ka =0,n, (81/7’2 a))] on the parameter &; /ha)for different N. From

above, the first line corresponds to the value § = O,l , the second - J = O, 25 and the third
g= O, 5- for a different value N.
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determined from the boundary conditions of the problem under consideration, Ai (éj ), Bi (§ ) are
the Airy functions, which oscillate for negative values of £both Ai(¢£), Bi(¢) and for positive
values &, the function Ai(¢&)

decays Bi(f) exponentially and grows exponentially. Therefore, in the future, for example, to

calculate the bound states of electrons, we consider that the coefficient B, =0, since the wave

function must decay at infinity (see Fig. 3) .
For definiteness, consider the case when the allowed area is to the left of the turning point

(£=0), and the forbidden area is on the right. Then we will be interested in a solution that

decays exponentially at £ — +ooand oscillates at & — —o0. Such a solution to the Schrédenger

equation is described by the Airy function of the first kind, which has the following asymptotics,
le.etc& — +oo

(& —>0)=A(1/2)E x exp{-(2/3)&"},

w (&> —0)=A(=£) ™" sin [(2/3) |(-£) +7z/4} (22)

Note that the relationship between damped and oscillating solutions (4) — (5) in the allowed and
forbidden energy regions can be obtained without matching the wave functions in a certain
coordinate. Let's illustrate this as follows. If we assume that the particle hits the triangular
potential barrier ) from the left, then from the right

from the barrier (in the region £>0) there

AiryBi(y) will be only the following exponentially
decreasing function:

W"(X):% exp( g 3”) (23)

which coincides with the asymptotic
expansion for the Airy function at x — +oo,
where C 1s a constant determined from the
AiryAi(y) boundary condition of the problem.

y In the classically allowed region I ( x<a), the

wave function can be represented as two
traveling waves

Fig.3. Airy function plot: Ai( y ) (diamonds)
and Bi( y ) (solid line)

v, (&)= i 2y 42

2.
“ 3/2 (25)
|§|”“ e FPtgtlel™)

In order for this expression to have the form of a standing wave and, thus, to coincide with the

ex IO(—
asymptotic expression for the Airy function at & — —0, it is necessary to require, for example,

C,=-Ce"™*/(2i)and C, =Ce"™*/(2i). In this case, formula (10) takes the following form

C 3/2
‘//|(§):|§|1/4 (2_55 j (26)
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Thus, we have established that the exponentially decaying solution transforms into an
oscillating solution.

In conclusion, we note that the complete and rigorous solution of the problem in the
semiclassical approximation, which will allow one to describe the wave function for arbitrary
values of x, now reduces to the problem of matching the exact solution of equation (6) near the
point & =0 with approximate solutions (4) - (5) in the region the applicability of the ratios. This

case requires a separate consideration.
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