— - - . - = =

GALAXY INTERN’KI‘IONAL INTERDISCIPLINARY RESEARCH J ﬁNAL (GIIRJ )
—~ISSN (E): 2347-6915

_,_' _-r— S

~ Vok-10, Issue 12; Dec. (2022)

ON ONE BOUNDARY PROBLEM FOR ONE PARABOLIC-HYPERBOLIC EQUATION OF
THE THIRD ORDER IN A QUADRANGULAR DOMAIN WITH TWO LINES TYPE
CHANGES
M. Mamajonov
Associate Professor of KSPI

Yu.Kharimova
Undergraduate Student of KSPI

ANNOTATION

: : . : . C . 0 0
In this thesis, two types are in a rectangular region with a variation line [6_ -——+ cJ(Lu) =0
X

for a third-order parabolic-hyperbolic equation in the form a single boundary value problem is
posed and studied.
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INTRODUCTION
The study of various problems for equations of the third and higher orders of the parabolic-
hyperbolic type began in the 1970s and 1980s . Such problems were studied mainly by T. D.
Dzhuraev and his students (for example, see [1] , [2]).
At present, the study of various boundary value problems for equations of the third and higher
orders of the parabolic-hyperbolic type is being developed in a broad sense. (for example, see [3

1-[5D.

FORMULATION OF THE PROBLEM

In the plane xOyregion G, consider the equation

Lu=u, —u,, (xy)eG,

Lu=u, —u,, (xy)eG, (i=223)
with vertices at points A(O, O), B(l, O), B, (1, 1), AO(O, 1); G, —triangle with vertices at points
A0, 0), A,(0,1), D(-1,0); G, —triangle with vertices at points B(L 0), B,(L 1), E(2,0);J, — open
segment with vertices at points A(O, O)and AO(O, 1); J, — open segment with vertices at points
B(l, O) and B, (1, l) , 1..e. G— quadrilateral with vertices at points D(—l, O), AO(O, 1), B, (l, 1) ,
E(2,0).

In this area, there is

where ceR, Lu E{ G=G,uG,uG,ul,Ul,, G, - rectangle
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A task Mll(fl)c. Find a function u(x, y) that is 1) continuous in a closed region G and in the area
G\ J,; \J, has continuous derivatives involved in equation (1), and u_, u,and u, are continuous

in G up to the part of the boundary of the region G specified in the boundary conditions ; 2)
satisfies equation (1) in the region G\ J,\J,; 3) satisfies the following boundary conditions:

u(x,0)= f,(x) 0<x<1, (2)
u,(x,0)=f,(x) 0<x<1, (3
u(x,0)= f4(x), ~1<x <0, (4)

u,(x,0)=f,(x) -1<x<0, (5)
u,, (x0)= fs(x) -1<x <0, (6)
u(x,0)= fs(x) 1< x<2, (7)
u,(x,0)=f,(x)1<x<2, (8
u,, (x0)= fy(x) 1<x<2 9)

and 4) satisfies the following continuous gluing conditions :
u(=0,y)=u(+0,y)=7,(y), 0<y<1, (ten)
=u,(+0,y)=v,(y) 0<y<1, (eleven)
L(=0y)=u_(+0,y)=1(y) 0<y<1, (12)
ull-0, y)=ull+0, y)=17,(y), 0<y<1, (13
u,@1-0, y)=u,[1+0,y)=v,(y), 0<y<1l, (fourteen)
u,(1-0,y)=u,(@+0,y)=s,(y) 0<y<1, (fifteen)

u,(-0,y)=u

where f, (i = ZFQ)are given sufficiently smooth functions, and 7, v, u; (j =1,2)are still unknown

fairly smooth functions.

Theorem. Let f, eC*[01], f, eC?[01], f, eC®[-10], f, eC?*[-10], f, eC'[-10], f, eC?[L2],
f,eC?[L2] , f,eC!L2] and the matching conditions are met 7,(0)=f,(0)=f,(0) ,
,(0)= 1,(0)= f,(0), 7,(0)= f,(1)= f,(1), v,(0)= f,(1)= f,(1), then the task Mj( 1. admits a unique

solution .
To prove this theorem, we introduce the notation u(x,y)=u;(x,y), (x,y)eG, (i=12,3).

Then equation (1) can be rewritten as
U — Uy, = (x+y)e™,  (16)
U — Uy, = & (x+y)e ™ (i=2,3), (17
where @ (x+y)(i=12,3) — unknown yet sufficiently smooth functions.
Sachala task Mll(_l)c consider in the area G,. Passing in equation (17) (i =3) to the limit
at y — 0, due to conditions ( 7) and (9) we find

w,(x) = fJ(x)— fy(x), 1< x<2.

In this equality, changing Xxon X+Y, we have
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oy (x+y)= flx+y)- fo(x+y) 1< x+y<2.
Now let's look at the following auxiliary problem :
Uge —Uszyy = Qs(x + Y)eicy’ (X: Y) € G,
Uy(x,0) = F5(X), us, (x,0)= F,(x), 0< x < 2, (eighteen)
U;(Ly)=7,(y) us, (L y)=v,(y) 0<y<L.
The solution of equation (1 8 ) that satisfies all conditions except the condition
u, (L y)=v,(y), we will search in the form
US(X! y) = u31(xl y)+ Us, (X, y)+ Uss (X7 y) (19)
where Uy, (X, y)—the solution of the problem

Usjw —Ugpyy = 0,

Uy (%,0) = Fy (), Uy, (x,0)=0, 0 < x < 2, (twenty)
Uy (L y)=7,(y) 0<y <],
U, (X, y)—the solution of the problem
Uy — Ugpyy =0,
Us, (%,0) =0, Uy, (x,0) = Fy(x), 0< x<2,(21)
u,,(Ly)=0, 0<y<l,
Uy (X, y)—the solution of the problem
Ugge —Usgyy = Qs (x+y)e ™, (x,y) € G,
Uy (X,0)=0, Uy, (x0)=0,0<x<2,  (22)
Uy(ly)=0, 0<y<1.

Here the functions F,(x), F,(x)and Q,(x+y) are defined as follows : when1<x<2 the
functions Fy(x)wa F,(x)are known: F,(x)= f,(x), F,(x)= f,(x), and for0<x<1 they are still
unknown . Function Q,(x+Yy)in between1<x+y <2 known, i.e. Q (x+Yy)=m,(x+Yy), and in
between0 < x+y <1 she is still unknown .

The solution to problem (20) that satisfies the first two conditions is written as

1
IO B TS Y
Substituting ( 2 3) into the third condition of the problem (20 ), we get
F,(l-y)=27,(y)- f,@1+y) 0<y<1 (24)

AT (24) changing 1-yto X, we find
F(x)=27,(1-x)- f,(2—x), 0<x<1
Then we have

27,(1-x)- fg(2—x), 0<x <1,
I:G(X):{fs(x), 1<x<2.

Now let's write a solution to the problem (2 1) that satisfies the first two conditions :
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X+y

Uy, (X, y)== IF (t)dt . (25)

-y
Substituting (2 5 ) into the third condition of the problem (21 ), we obtain
F,l-y)=—f,1+y),0<y<1. (26)
AT (26) changing 1-yon X, we find
F,(x)=—f,(2-x), 0<x<1.

So ,
~f,(2-x), 0<x<1,
F, (X): f (
J(x)1<x<2.
Finally , let's write down the solution of the problem (2 2 ) that satisfies the first two
conditions :

X+y—-n

Ugs(%,y) = ——Ie‘“’dn [o,(e+nue. @D

X=y+n

Substituting (2 7 ) into the third condition of problem (2 2 ) , we obtain
Ie‘C”Q —y+2n)dn = —w, 1+yje “dn . 28)
In the integral on the left parts of equality (2 8 ) , making a replacement 1—y+27=1—1z, we get
'fez ) L(1- zdz_—2a)31+y_[e “dn . (29)

Differentiating equalities (29) and taking into account equality ( 29 ) itself, after some
calculations, we find

y
Q,(L-y) = {2051+ y) + co, L+ y)lf e *dnp ~ 30, 1+ y)e .
0

Now substituting (2 3), (2 5) and (2 7) into (19 ), we have

X+y-n

u3(x,y):1[ Fo(x+y)+F(x—y +—IF dt——J'e’”’dn IQ (&+n)dé. (thirty)

X=y+n

Differentiating ( 30 ) with respect to X, we find

(%, ) = S RO y)+ Filx=y )]+ 2[R (e y)- Fr k- y)]-

——J‘e “[Q,(x+y)-Q,(x—y+27)ldr. (31)

Passing in (3 1) to the limit at x —1 and taking into account (24 ), (26) and (2 8) , we
arrive at the relation

Va (y): —7; (y)+ﬂl(y)1 0<y<1,(32)

where

Bu(y)= 10+ y)+ £, L+ y)- o {1+ y)[e"dn.
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Now the task Mll(fl)C consider in the area G,. Passing in equation (3.1.17) (\i=2) to the
limit at y — 0, due to (4) and (6) , we obtain
w,(x)= £(x)— f5(x), 1< x<0.
In this equality, changing xon X+Y, we find
@, (x+Yy)= fJ(x+y)- f(x+y), ~1<x+y<O0.
Now consider the following auxiliary problem :
Upy — Uy =, (x+Y)e ™, (X, y)eG,,
u,(x,0)= F;(x), u,, (x,0)= F,(x), ~1< x <1, (33)

UZ(O, y) =17, (Y)’ Usy (O’ y) =V, (Y)1 0<y<l.

Solution of problem (33) that satisfies all the conditions of this problem except
u,.(0,y)=v,(y), we will search in the form

U (%, ) = Uy (%, )+ Uz (X, y) + Ugg (x, ), (34)
here u,, (X, y)—the solution of the problem

Uppee —Upyy =0,
Uy (X,0) = Fy(x), Uy, (x,0)=0, —1< x <1,(35)
u,(0,y)=0, 0<y<1,
U,, (X, y)—the solution of the problem
Uppx —Ugpyy =0,
Uy (X,0)=0, Uy, (x,0)=F,(x), ~1< x <1,(36)
u,(0,y)=0, 0<y<1
U, (X, y)— the solution of the problem
Upaee —Ugzyy = Q,(x+ Y™, (X, ¥)€G,,
Up(X,0)=0, Uy, (x,0)=0,-1<x<1 (37
U,(0,y)=0, 0<y<1.
Here F,(x), F,(x)andQ,(x—y) are defined as follows :
In the interim —1<x<0 functions F,(x)and F,(x) known,i.e. F,(x)= f,(x), F,(x)= f,(x), and in
the interval 0<x<1 they are still unknown . In the interval —1<x+y<0, the function
Q,(x+y)is known, i.e. Q,(x+Yy)=am,(x+y), and in between0< x+ y <1 she is still unknown .

Let's write down the solution of problem (35) that satisfies the first two conditions of this

problem :
1
IO TR P NES
Substituting ( 38 ) into the third condition of problem (35) , we obtain
Fi(y)=2z,(y)-f;,(-y) 0<y<1. (39)
Means
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f.(x), -1<x<0,
F3 (X): 3( )
2r,(x)— f5(~x), 0<x<1.
Now let's write a solution to problem (36) that satisfies the first two conditions of this
problem :

X+y

Uy (X, y)== IF (t)dt. (40)

X y
Substituting (40) into the third condition of problem (36) , we obtain
F4(y):_f4(_ y), 0<y<l1. (41)

F4(X)={f“(x)’ ~1<x<0,

—f,(~x), 0<x<1.

Finally , let's write a solution to problem (37) that satisfies the first two conditions of this

Means

problem :
X+y-n

23(X y __je_cndﬂ IQ §+77)d§ (42)

X=y+n
Substituting (42) into the third condition of problem (37) , we obtain the relation
y y
[, (27— y)dn = -0, (y)[e"dn. (43)
0 0

Now substituting (38), (40) and (42) into (34), we obtain

X+y-n

uz(x,y):;[ L(x+y)+F(x—y +—IF t)dt——je’”dn IQ (E+n)dé. (44)

X=y+n

Differentiating (44) with respect to X, we have
(6 Y) = SR )+ Rl y )]+ [ y) = Fa (- y))-
——Ie “[Q, (x+y)-Q,(x—y+27)d7y . (45)
Passing in (45) to the limit at X — 0 due to (39), (41) and (4 3) , we arrive at the relation

ny) =S IR+ HE Y2 IR)- Lyl

1 [ 17 .
_EQZ(Y)'([G nd77+5'([e an(zﬂ_y)dU:

- Sleei)s B ) Ll g eyl Je 0 n-yin.
those.
vi(y)=zi(y)+ (- y)- f(-y)+ fe”Qz(Zn —y)n, 0<y<1
silt and O
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fe”Qz(Zn —y)dn =vi(y)-2l(y)- (= y)+ .- y).

In the integral, which is on the left side of this equality, by replacing 27— ywith —z, we
get

J e 270, (- 2)dz = 2 (y) - 7i(y)- (- y)+ fL(-y)]. 46)

Differentiating (4 6 ) and takmg into account again this equality (4 6 ), after some calculations,
we find

Q,(y)=~a, (- y? ~clvi(y)-7(y)- fi(- y)+ f,(-y)e” +
+2vi(y)-7(y)+ £ y)- £ y)e” (47)
Now passing in equation (16) to the limit at y — 0, we find :
o, (x)= f,(x)- f,(x) 0<x <1,

the notation is introduced here
X+Yy)0<x+y<]l
a)l(x+ y): wn( Y) y
@, (X+y)1<x+y<2,
Further, passing in equations (17) (i =2) and (16) to the limit at x — 0, due to (1 0) and
(12), we obtain the relations
ﬂl(y)_rl”(y): Q, (y)eicy' 0<y<1, lul(y)_z-l'(y): a)ll(y)eicy’ O<y<l
Eliminating from these relations the function /(y), we find
Qz(y) = a)ll(y)_ [Tl”(y)_ Tll(y)]ecy ,0<y<1.(48)
If we substitute (48) into (47), then after some calculations we arrive at an ordinary
differential equation for v;(y):

M-S ()= 5 )+ oo e ) +s,(y) 0< y <1, (49
where
52(y) =S ou(y)+ 2e% (- y)- SR y)- L)k [0 y)- Ty
Solving equation (49) under the condition v,(0)= f,(0), we get the ratio
v,(y)= %eq’rl’(y)+ 2-3c Eez(yﬂ)rl’(z)dz +B,(y), 0<y <1, (fifty)
here

c c Y S,
Boly) =5 £,(0)+ 2" £(0)+ [ s, (2)dz-

o

Now the task M 11(_1)0 consider in the area G,. Passing in equations (16) and (17) (i=3) to
the limit at x =1, due to (13) and (15) we get

1, (Y)=73(y) = 0, 0+ y) ™ g1, (y)-75(y)= 0,1+ y)e ¥, 0y <1.
Excluding from these equations the function g, (y), we find

@, (1+Y)= 0,1+ y)+ [ (y)- 73 (y)” . (51)
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Further, we write the solution of equation (16) , satisfying conditions (2), (10), (13):

ul(x,y):_[rl(n)G§(x,y;O,n)dn+Irz( (% YLy d77+jf G(x,y;&,0)dE -

0

[y [ oy (£+m)6(x y:ém)de - Ie °”d77fw12 (& +n)G(x yign)ds. (52)

1-n

Differentiating ( 52 ) with respect to X, we get

Uy (%, Y ——Ifl (% ¥:0.7 d77+ffz N (x, y:l,n)dn+ff1’(§)N(x, y;£,0)dé +

+J‘e*°”d77_[a)11(§+77)N (¥ &m d§+je °”dnfw12 (& +m)N; (x.y:§,m)dE.

1-n
In the last integral of this equality, replacing £+7byl+z and substituting (51) into the

last equality , after some calculations and transformations, we get

iy (%y) =~ 7/ (TN (%, :0m)dn + [ 24 (7)N (%, yidom) b+ ()N (x,:£,0)d +

0

+Ie’c”dn] o, (E+m)N, (X, y;;‘,n)d§+.|‘a)3 (1+ Z)dZIe*C”Ng (% yil=n+2z,n)dn-

Ie”’N X,y;l—m,n)dn— c+1j.r I N, (x,y;z2—-n,z)dz+
0

n
y
+jr n)d _[ N, (X, y;1-z+n,2)dz. (53)
0
Passing in (53) to the limit at X — 0, due to (50) , we get
1 o, 2-3ct Sy,
~e%z (Y)"' 4 Iezynfl(ﬂ)dfﬁﬂz()/):
0

2 1

[l ()N (O,y:0m)dn + [ (7)N (0, yiLm)dm + [ F/(E)N(0,y:,0)d +

1-n

+J.efc"d77_[ @y (& +77) N, (0. y:&m)dS -1, (O)J.eic”ch (0.y;1=m,)dn -

0

y y y y
—(c +1)jr )dnjec(”‘z)Né (0,y;1-z+n,2)dz +J'rz’ (77)d77J‘e°(’7‘Z)NZ (0,y;1-z+n,z)dz+
0 n 0 U

y y
+Iw3 (1+ z)dzJ‘e’C”Ng (0,y;1-n+z,m7)dn.
0 z
If in this equality we introduce the notation

2-3c Sr2)
Ki(yn) == Ce2"" 426 N(0,:0,7), K, (y,77)=-2¢ N(0, yL 1)+

y y
+2(c +1)J.e°(”’y’Z)N§(O, yl-z+n,z)dz- 2Ie°("’y’Z)N (0,y1-z+7n,2)dz,
n
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0,(y) =267, (y)+ 267 [ {(E)N (0, y:¢&,0)dE +2[e " [ any (£+7)N, (0,y:&,m)dé -

y

y y
=21,(0) [ "N, (0, y;1-1,7)dn +2[ , (1+ 2)dz e "N, (0, y;1- 1+ 2,7)d7,
0 0

z

then we get
71(y)+ [ K, (v )i ()dn + [ K, (y.m)es (r)dn = g,(y). (549)

no olamis.
Now passing into (53) to the limit at x —»1, due to (32), after lengthy calculations and
transformations, we obtain

Té(y)+fK4(y,ﬂ)f£ (n)dn +TK3(y,n)f£(77)df7 =9,(y), (5)

where

Ka(y,7)=-N(@L y;0,7), K, (y,7)=-N(L y:L.p) -

y y
—(c +1)J.e°(”‘Z)N§(1, yl-z+n,2)dz+ Iec(”‘z)Nz L yl-z+n,2)dz,
n

9.(y)=A.(y)- fl'(é)N(1,y:éO)dé—fe‘“’dnl]nwn(éw)'\'f(Ly:é,n)dé—

O L

y

y
I 1+z dzIe’C”N 1yl 77+277 d77+f J.Ng 1y;l—77,77)d77.
0

0

Solving system (54), (55) , we find the functions z;(y)andz}(y) and thus , the solution of

the problem My, is unique.
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