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ABSTRACT 

In this article, we focus on the observation of single-level nonlinear interactions, the binding 

of light-substances for nonlinear optics, and the use of weak nonlinear responses relative to 

the state of the microscopic perspective. 
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INTRODUCTION 

Typically, high-intensity lasers are required for nonlinear optical processes because the 

nonlinear optical cross-section for electromagnetic field coupling in matter is quite small and 

requires large field strengths [10] to observe deviations away from linear behavior. In other 

words, the nonlinear polarization current induced by an incident optical field is quite small 

compared to the linear displacement field in naturally occurring media. In the regime where 

the wavelength of light is of the order 10−6 m, a single atomic system (typical size, ≲  10−10 m) 

can be approximated as a dipole, with the intra-atomic distance being between the positive 

nucleus and an electron in the relevant orbital. In the dipole approximation, the interaction 

energy between the electron and the electromagnetic field can be written as, 𝐻̂1 = − 𝜇̂ ∙ 𝐸̂, where 

𝜇̂ =  −𝑒𝑟̂ is the electric dipole moment operator and 𝑟̂ is the position operator. In the rest of this 

section, we consider a semi-classical theory of the nonlinearity, where only the medium is 

treated quantum mechanically and the field is treated classically, i.e. a с-number represents 

the field instead of an operator. In the Schrodinger picture, the quantum state of the medium 

can be represented by a density matrix, p, that obeys the Liouville-von Neumann equation [10], 

𝑝̂ =  
−𝑖

ℎ
[𝑝̂, 𝐻̂]                                                 (1.1) 

where 𝐻̂  =  𝐻̂0  +  𝐻̂𝐼, where 𝐻̂0 is the Hamiltonian of the unperturbed atomic system. However, 

due to the interaction with the environment, i.e. with neighboring dipoles and vacuum 

fluctuations, the quantum state evolution needs to describe decohering processes as well, which 

can be modeled as damping terms. Thus, Eq. 1.1 is transformed into, 

𝑝̂𝑛𝑚 =  −
−𝑖

ℎ
[𝑝̂, 𝐻̂]

𝑛𝑚
−  𝛾𝑛𝑚(𝑝𝑛𝑚 − 𝑝𝑛𝑚

(𝑒)
)                           (1.2) 

where the subscripts n, m are the row and column indices for the density matrix, p̂ =

 ∑ ⟨n|p|m⟩⟨m|nm , which is decomposed in energy eigenfunction basis for the medium (in the 
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absence of the interaction energy 𝐻̂𝐼, i.e. 𝐻̂0|𝑛⟩\n) = 𝐸𝑛|𝑛⟩), 𝛾𝑛𝑚 describe the damping rates for 

the various energy levels due to decoherence of the quantum state, and p𝑛𝑚
e  is the equilibrium 

state of the material. In this formulation, under perturbation theory, writing 𝑝𝑛𝑚 =  p𝑛𝑚
(0)

+

 λp𝑛𝑚
(1)

+  λ2p𝑛𝑚
(2)

… , we can solve for the various higher-order contributions independently using 

a Volterra series expansion. Without reproducing the derivation verbatim from [10], we will 

explicitly write the form of the second-order nonlinear correction term for the electric 

susceptibility. In this case, with the positive-frequency components of the applied electric field 

taking the form of 𝐸(𝑡)  =  ∑ 𝐸(𝜔𝑞)𝑒−𝑖𝜔𝑞𝑡
𝑞  , the lowest-order nonlinear term contributing to the 

susceptibility can be expressed as, 

𝑝𝑛𝑚
(2)

= 𝑒−(𝑖𝜔nmt+ 𝛾nmt) ∫ dt′
t

∞

−𝑖

ℎ
[𝑝̂(2), 𝐻̂𝐼]

𝑛𝑚
𝑒(𝑖𝜔nmt′+ 𝛾nmt′) =  

= 𝑒−(𝑖𝜔nmt+ 𝛾nmt)  ∫ dt′
t

∞

−𝑖

ℎ
∑(𝜇𝑝𝑘𝑚

(1)
− 𝑝𝑘𝑚

(1)
𝜇) ∙ 𝐸(𝑡)𝑒(𝑖𝜔nmt′+ 𝛾nmt′)              (1.3) 

which upon expansion can be related to the second-order polarization of the medium as, 

𝑃̂(2)(𝜔p + ωq) = N⟨𝜇𝜔p + ωq⟩ = N ∑ 𝑝𝑛𝑚𝜇𝑛𝑚

nm

                  (1.4) 

where N is the number density of atoms, and each cartesian component of the polarization 

current can be written as, 

𝑃̂𝑖
(2)

(𝜔p +  ωq) = ϵ0 ∑ ∑ Xijk
(2)

(𝜔p +  ωq, ωq, 𝜔p)Ej(ωq)Ek(ωp)
(pq)jk

         (1.5) 

where the (pq)-index notation implies that 𝜔p +  ωq is held fixed while 𝜔p and 𝜔q could be 

correspondingly independently changed. Xijk
(2)

(𝜔p +  ωq, ωq, 𝜔p) then has terms proportional, 

where l𝑚𝑛 are the same dummy indices that are iterated over in the definition of p. In this 

expression, we see that the nonlinear response can be made very large by (i) increasing the 

number density of dipoles per unit volume (N) and (ii) resonant pumping such that the real part 

of the denominator terms is nearly zero. Let us consider the latter case first: we see that under 

resonant enhancement of the nonlinear response the linear decay terms characterized by 𝛾 play 

a big role, and for our physical system, translate to photon loss in the medium. Since such loss 

is deleterious for most, if not all, quantum optical technologies, some nonlinear strength must 

be sacrificed in order to retain low loss operation. Similarly for a given material, the number 

density of atomic dipoles is fixed by its own structure. However, we can compensate for the loss 

in nonlinearity by increasing the field strength that contributes to the nonlinear polarization 

current in Eq. 1.5 while simultaneously reducing the optical mode volume so that N is 

maximized. In this thesis, we choose to do this by using a high-Q, small-mode-volume (V) optical 

dielectric cavity. 

We note that the objective of this discussion was to highlight the microscopic contribution to 

nonlinear responses in dielectric media, while also, simultaneously showing that experiments 

that can utilize ensembles of atoms can provide large nonlinear responses in the off-resonance 

regime by enhancing the applied electric field in a cavity-geometry. The description herein also 

shows the deviation for the off-resonant regime from the resonant light-matter coupling 

typically used to achieve large optical nonlinearities at the single photon level because we do 
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not consider atom-atom interactions, and importantly, in the density matrix picture used for 

the medium, there is no physical population transfer in any of the atoms, i.e. the medium was 

at thermodynamic equilibrium [10]. This has meant that we consider only the bulk macroscopic 

response of the nonlinearity (see Chap. 3). 

Quantum nature of the electromagnetic field 

In the previous section, we looked at the nature of the optical nonlinearities that are available 

in bulk media. In this thesis, we are focused on using such relatively weak nonlinear responses 

to observe single-photon-level nonlinear interactions. Because the electric and magnetic fields 

are physical observables, in quantum theory, they are to be represented by operators (𝐸̂(𝑟, 𝑡)  →

 𝐸̂(𝑟, 𝑡), 𝐻̂(𝑟, 𝑡)  →  𝐻̂(𝑟, 𝑡)), which are accompanied by their commutation relations. The resulting 

consequences of commutativity is outside of the purview of classical electromagnetic field 

theory. One such consequence is the presence of the vacuum state, i.e. the |0⟩ state, and its non-

zero variance in energy. Owing to experimental observations such as that of the Lamb shift 

[12], the interaction between the vacuum fluctuations of the electromagnetic field and a two-

level system, which also results in spontaneous emission, was widely believed as the empirical 

proof for the quantum nature of light. However, it was found that spontaneous emission in 

vacuum from a two-level system could be explained [13] without invoking explicitly the 

quantum features of the electromagnetic field. However, the correlation functions for the 

fluorescence from such an interaction would directly invoke the quantum features, and 

therefore, are a better test for the “quantumness” of the field. It is in this vein that we interpret 

the quantum features of the field in this work. Given a source field 𝐸̂(𝑟, 𝑡), the two-time 

normalized auto-correlation function, 

𝑔(2)(𝑟, 𝑟′; 𝑡, 𝑡′) =  
⟨: 𝐸(−)(𝑟, 𝑡)𝐸(−)(𝑟′, 𝑡′)𝐸(+)(𝑟, 𝑡)𝐸(+)(𝑟′, 𝑡′): ⟩

⟨𝐸(−)(𝑟, 𝑡)𝐸(+)(𝑟, 𝑡)⟩⟨𝐸(−)(𝑟′, 𝑡′)𝐸(+)(𝑟′, 𝑡′): ⟩
                (1.6) 

where 𝐸̂(+)(𝑟, 𝑡) and 𝐸̂(−)(𝑟, 𝑡) are the annihilation and creation operators for the elec-

tromagnetic field, is used as the metric for determining the quantum behavior of a field and : ∙∙∙ 

: denotes normal ordering [14]. In the case of a stationary field, the correlation function 𝑔(2) is 

only dependent on the time and spatial differences rather than absolute positions. Moreover, 

we can suppress the spatial arguments as the two field measurements will happen occur within 

a light-cone and will be made by detectors coupled to singlemode fibers. Thus, with this 

definition, 𝑔(2) = (𝜏 = 𝑡 − 𝑡′ = 0) has a few salient properties: (i) for coherent states, 𝑔(2) =  1, 

and signifies Poissonian statistics for the field-correlations (ii) 𝑔(2) >  1 denotes super-

Poissonian statistics with the special case of 𝑔(2) =  2 for thermal beams of light, and finally, 

(iii) 𝑔(2) <  0 denotes sub-Poissonian statistics, and is a unique consequence of the quantization 

of the field [15]. It is in this final area that we are interested in. In the special case of a single 

photon Fock state in one mode, 𝑔(2) =  0. For quantum information processing applications, it 

is important to consider the photonic quantum state transport through the active and passive 

devices that will be present in the optical circuitry. In this thesis, we study nonlinear 

interactions between single-photon-level quantum states to address the feasibility of large-scale 

QIP. 
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