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ABSTRACT 

The general method for calculating tunnel lining, as a multilayer one, developed by N.S. 

Bulychev and N.N. Fotieva [1, 2, 3], is based on the use of equivalent loads and effects (Fig. 1). 

 

Fig. 1. Design scheme for determining the equivalent loads on the tunnel 

 

Here, under the action of the initial gravitational and tectonic stresses, it will be in the form: 
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Equivalent quasi-static stresses from the action of a longitudinal seismic wave are calculated 

in the form [1, 2]: 
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from shear wave action 
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Where 
0 - coefficient taking into account the flat deformed state. Consider the stress 

distribution (Fig. 2), in an elastic ring with external stresses: 

 2sin)()(,2cos)()()( 220 jqjqjPjPjP                        (4) 

Where 0j  on the 0L  and 1j  on the 1L , 
 - dimensionless coefficient, taking into account 

the lag of production from the face [1, 2],
)0(

2

)0(

1 , - the main initial stresses in the soil. The 

normal stress on the outer and inner contours of the ring from the standpoint of the classical 

theory of elasticity is [1, 2]: 
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Fig. 2. Ring in an elastic medium 

Under the action of stresses, the ring is deformed, while the points of the outer and inner 

contours experience displacements according to [1, 2]:   
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 2sin)()(,2cos)()()( 220 jvjvjujuju                          (5) 

)(),( jvju - radial and tangential movements.  

From (5) displacements are determined in the form: displacement on the inner contour and 

displacement on the outer contour: 
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Guu exin ,,  - radial displacements of the inner layer, radial displacements of the outer layer 

and shear modulus. Here 
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Where   - coefficient for lining material. 

The design scheme of a two-layer lining with a working array is shown in fig. 3. 

 

Fig. 3. Diagram of a ring in an elastic medium 
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Now, let's determine the transfer coefficients of external loads in the ring. We assume that a 

uniform deformed state occurs, i.e., the stresses at the contact between the structure and the 

ground are equal to )1()1( 0pr  ... Then we consider that the stresses on the outer and inner 

contours of the layers are related by the ratio: 

)2()1()1( 020 Kpp                                                  (7) 

Under the action of external stresses applied to the two-layer ring, the layers under 

consideration are deformed, and we assume that there is a relative displacement on the 

contact line of the two layers equal to 0u ... 

Then according to one can write 1,02, )( exin uuu   and it is the total displacement of the 

inner contour of the 2nd layer with a certain relative displacement exactly equal to the 

displacement of the outer contour of the 1st layer. The problem is elastic and linear, and 

based on the above condition, we will compose the following equation: 
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Here rk - the coefficient of the radial (transverse) interaction of the structure with the ground. 

According to [4, 5], one can write   

Substituting equation (8) into equation (7) and after cancellation we obtain 
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Here, the stress transfer coefficient through the 1st inner lining layer is equal to zero 

0)1(0 K ... Further, we finally obtain the following expression for the transfer coefficient of 

uniform external stresses through the 2nd layer: 
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Divide the numerator and denominator by 2

2c since the voltage is transmitted through 

an infinite layer. Then we get 
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Now consider the case where external forces are transmitted unevenly through an infinite soil 

layer. Irregular components of radial contact stresses )1(2p , )2(2p  and shear stresses )1(2q  
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and )2(2q  on the inner and outer contours of the layers are connected with each other by the 

following relationships, which also contain the transfer coefficients of external stresses [1]:  
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or in matrix form 

221 PKP


                                                  (12) 

Where 2K - matrix of transfer coefficients of external voltages 
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Let us represent the expressions for displacements in matrix form 
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12 ,,, BBAA - matrix of coefficients of influence. To shorten the arithmetic calculations, we 

do not present them here, since they coincide with the coefficients given in [33]. If we assume 

that the interaction coefficients are known in advance and determined experimentally [4, 5], 

then under the condition of contact between the two layers, it can be written as: 
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The stresses are related in the form  

221110 PKKPKP
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Substituting expression (16) taking into account (14) into condition (16), we obtain 
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From this it is easy to obtain a matrix formula for determining the transfer coefficients of 

external stresses 
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Here 
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The matrix of stress transfer coefficients through the outer infinite layer, modeling the rock 

mass, has the following form 
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as 0)1(2 q  , so 0)2(12 K  and 0)2(22 K ... 

Stress transfer coefficients through the 1st layer are equal to zero 01 K , as a consequence of 

which the load transfer coefficients through the 2nd layer are determined by the formula (19). 

Here you can take 

)2()1(),2()1(),2()1( 21221122000 KpqKppKpp egegeg   

According to the obtained values at the contact of the lining with the soil massif, the stresses 

on the inner and outer contours of the cross-section are determined by the formulas (4). The 

developed calculation method differs from the existing method [1, 2, 3], taking into account 

the influence of the layer of interaction of the structure with the soil. For its implementation, 

a calculation program was drawn up. 

Let us consider an example where M. Kwasniewski carried out model tests of a concrete 

structure for uniform external loads created by a jack installation [3]. The characteristics of the 

model are as follows: R =32.5 cm - lining diameter, t = 8 cm - lining thickness, E = 45185 MPa, 

c = 34.1 MPa - ultimate strength of the lining material.  
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1- deformation on the inner contour obtained by the developed method, 2- deformation on 

the inner contour, obtained according to [3]  

Fig. 4. Dependence between deformations on the inner ( in ) and external ( ex ) the contour of 

the section of the concrete lining 

In fig. 4 shows the results of measurements of tangential deformations on the inner and outer 

contour of the lining cross-section as the uniform external loads on the lining grow. To carry 

out a comparative analysis according to the developed method, the lining was calculated for 

uniform external pressure. Here you can see a satisfactory convergence of the obtained 

deformations with the measured ones, by almost 80-85% in the linear stage of the material 

operation. 
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