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ABSTRACT 

This paper aims at a class of uncertain 5D laser dynamic systems, seeking a linear controller 

that is cheap and easy to produce in hardware, so that the entire system can achieve stability. 

Using differential and integral inequalities combined with control theory, a linear controller 

guaranteed to achieve global exponential stability will be derived. Besides, the guaranteed 

exponential convergence rate will be estimated. Finally, multiple numerical simulation results 

are provided to illustrate the correctness of the main theorem of this article and the design 

process of the linear controller. 

 

Keywords: uncertain 5D laser system, robust control, linear control, state feedback, global 

exponential stability, uncertain systems. 

 

INTRODUCTION 

As we know, since laser dynamic systems are nonlinear systems, their related analysis and 

design are naturally more complex and difficult than linear systems. In recent years, there 

have been many related analyzes and research results on laser dynamic systems; see, for 

example, [1]-[11] and the references therein. In particular, some laser dynamic systems have 

been proven to be chaotic systems, and the unpredictability of their signals makes controller 

design more difficult. 

The parameters of most dynamic systems often change with temperature, humidity or 

pressure, etc. Therefore, it seems that a mathematical model that is consistent with the actual 
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situation becomes crucial. Considering the uncertain dynamic system as a real model can be 

the solution. 

In this paper, due to the above motivations, the problem of controller design for uncertain laser 

dynamic systems is explored. For a type of uncertain 5D laser system, we hope to design a 

linear controller to promote the entire closed-loop system to achieve global exponential 

stability. In addition, we will accurately calculate its exponential convergence rate. Finally, 

some numerical simulation results are provided to verify the correctness of the proposed 

theory. Throughout this paper, a  denotes the modulus of a complex number a and x  means 

the Euclidean norm of the vector nx  . 

 

PROBLEM FORMULATION AND MAIN RESULTS 

In this paper, we explore the following uncertain 5D laser systems: 

 ( )543211322111 ,,,, xxxxxfxdxdaxx +++= , (1a) 

 ( ) ( )1154321257463524132 ,,,, uxxxxxfxdxdxdxdxdx ++++++= , (1b) 

 ( ) ( )2254321351241131029183 ,,,, uxxxxxfxdxdxdxdxdx ++++++= , (1c) 

 ( )54321443142134 ,,,, xxxxxfbxxdxdx +++= , (1d) 

 ( )54321553162155 ,,,, xxxxxfcxxdxdx +++= , (1e) 

where ( ) ( ) ( ) ( ) ( ) ( )  15

54321: =
T

txtxtxtxtxtx  is the state vector, ( ) ( ) ( )  12

21: =
T

tututu  

is the input vector, ,,, cba  and id  are uncertain parameters, if  is a nonlinear smooth 

function and satisfies ( )  5,4,3,2,1,00,0,0,0,0 = ifi , and the smooth operator 

( )  2,1,: → iui  is the uncertain input nonlinearity.  

Below we make appropriate assumptions regarding the nonlinear terms and uncertain terms 

of uncertain nonlinear systems of (1): 

(A1) There are constants ,,, cba  and id  such that 

 .16,,3,2,1,,0,0,0 −−− iddccbbaa ii  

(A2) There are positive numbers ,,,, 4321 kkkk  and 5k  such that  

( ) 0,,,,
5

1

54321

2 =
=i

iii xxxxxfxk . 

(A3) There are positive numbers 1r  and 2r  such that 

( )  2,1,2  iuuur ii  . 

 

Remark 1: The 5D laser dynamic system was first proposed and studied by Zeghlach and 

Mandel [11]. Its model is equivalent to (1) with the following parameters: 

,25.0,1,2 −=−=−= cba  ,004.022 111431 −=−==−= dddd  

,22 10624 −==−=−= dddd  ,20138 == dd  

 ,16,15,12,9,7,5,0 = idi ( )  2,1,0 = iui . 

Obviously, the system considered in [11] can be regarded as a special case of uncertain systems 

of (1). 
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The following introduces the relevant definitions mentioned in the main theorem of this paper. 

Definition 1 [12, 13]. If there are positive numbers k,  and a suitable controller satisfies 

( ) 0,  − tektx t , 

the uncertain nonlinear systems (1) are said to be globally exponentially stabilized. 

Furthermore, we call this positive number   the exponential convergence rate. 

 

Before stating the main theorem, we define the following two parameters: 
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In the following we present the main result for the global exponential stabilization of uncertain 

nonlinear systems of (1). 

Theorem 1. The uncertain 5D laser systems (1) with (A1)-(A3) are globally exponentially stable 

at the zero equilibrium point, subject to the linear controller 

   ,3221

T
xxu  −−=  (3) 

with 

 ,,
2

2102
2

1

141
1

r

hdl

r

hdl ++


++
   (4) 

01 h , and 02 h . Besides, the guaranteed exponential convergence rate can be estimated as 

 








= 21,,
3

,
3

,
3

min: hh
cba

 . (5) 

Proof. Let  

 ( )( ) ( )
=

=
5

1

22:
i

ii txktxV . (6) 

The derivative of ( )( )txV  with respect to time along the trajectories of uncertain systems (1), 

with (A1)-(A3) and (2)-(6), can be derived as 
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Thus, one has  

  .0,02 222 =+ tVe
dt

d
VeVe ttt    

It follows that 

( )( )  ( )( ) ( )( ) .0,000
0

2

0

2 =−=  tdxVtxVedtxVe
d

d
t

t

t




  (7) 

From (6) and (7), it can be readily obtained that 

( ) ( ) ( )( ) ( )( ) ,0,0min 222

51
 −


txVetxVtxk t

i
i

  

In this way we can get 

( )
( )( )

( ) .0,
min

0

51

 −



te
k

xV
tx t

i
i

  

The proof is thus completed. 

 

Remark 2. Due to the proposed linear controller of (3), it is not only cheap but also easy to 

implement in hardware.  
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NUMERICAL SIMULATIONS 

In this section, we consider the uncertain 5D laser systems of (1) with  

 ,,,,0,0 4231552451321 xxxxfxxfxxfff +=−=−===  (8a) 

 ( ) ( ) 3

22021922

7

11811711 , ududuududu +=+=   (8b) 

 30,75,20,1210 20191817  dddd , (8c) 

  16,15,14,12,11,9,7,5,3,1,1,2.0,5.0,1 ==== idcba i , (8d) 

 .2,21,3 10138642 ====== dddddd  (8e) 

By virtue of choosing parameters 101 =r  and 52 =r  with (8b) and (8c), (A3) is evidently 

consistent. Obviously, by selecting parameters 154321 ===== kkkkk , (A2) is undoubtedly 

satisfied. From (2), (8e), and choosing parameters 121 == hh , it yields 7.88
1

141 =
++

r

hdl  and 

4.91
2

2102 =
++

r

hdl . Therefore, according to Theorem 1 with 891 =  and 922 = , we conclude that 

the uncertain nonlinear systems (1) with (8) subject to the linear control  

  Txxu 32 9289 −−=  (9) 

are globally exponentially stable. At the same time, by virtue of (5), the guaranteed 

exponential convergence rate can be estimated as  

 
15

1
,,

3
,

3
,

3
min 21 =









= hh
cba

 .  

State variables trajectories of uncontrolled and feedback-controlled systems are displayed in 

Figure 1 and 2, respectively. From Figure 2, it can be seen that through the linear controller 

of (9), the system (1) with (8) can attain the goal of global exponential stability. Meanwhile, 

the input signal trajectories and the hardware implementation diagram of the proposed linear 

controller are shown in Figure 3 and Figure 4 respectively. 

 

CONCLUSION 

In this paper, the controller design problem for a class of uncertain fifth-order nonlinear 

control systems has been explored. Combining the theory of differential and integral 

inequalities, a simple linear controller has been proposed to promote a class of nonlinear 

control systems with multiple uncertainties to achieve the goal of global exponential stability. 

In addition, the guaranteed exponential convergence rate of such uncertain nonlinear systems 

has been precisely calculated. Finally, some numerical simulation results have also been 

presented to verify and illustrate the correctness of this main theorem and the design process 

of the controller. 
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Figure 1: State variables trajectories of the uncontrolled systems of (1) with (8). 

 

 

Figure 2: State variables trajectories of the feedback-controlled systems of (1) with (8) and 

(9). 
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Figure 3: The time response of the control signal of (9). 
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Figure 4: The diagram of implementation of numerical example, where ,11 = kR  ,892 = kR  

,13 = kR , and .924 = kR  
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