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ANNOTATION 

This paper is aimed at a nonlinear system, and intends to design a simple linear controller, so 

that the entire closed-loop control system can achieve the goal of global exponential stability. 

Besides, the exponential convergence rate of such a system will also be rigorously derived. 

Finally, we will provide a numerical simulation example to verify the correctness and 

applicability of the main theorem in this paper. 

 

Keywords: global exponential stability, nonlinear systems, exponential convergence rate, linear 

control. 

INTRODUCTION 

As we know, real physical systems are nonlinear systems, and we often use its linear model for 

analysis and design, mainly because the analysis and design of linear systems are easier than 

nonlinear systems. However, when the design results are applied to real nonlinear systems, 

distortion or biased results often occur. Therefore, it is reasonable and correct way to analyze 

and design the actual nonlinear system. In the past, there have been some well-developed 

methodologies for controller design of various nonlinear systems; such as sliding mode control 

methodology, differential and integral inequalities, backstepping approach, and others; see, for 

example, [1-7] and the references therein. This paper will focus on a nonlinear system, using 

the methodology of differential and integral inequalities, to design a linear controller that is 

easy to implement in hardware, so that the closed-loop control system can achieve the goal of 

global exponential stability. 

 

PROBLEM FORMULATION AND MAIN RESULTS 

This paper explores the following fifth-order nonlinear dynamical system: 

131221111 uxcxccxcx ++−−= ,  (1a) 

241211212 uxcxcxccx ++−= ,  (1b) 
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351423133 uxxxcxxcx +−+−= ,  (1c) 

452432234 uxxxxcxcx +−−−= ,  (1d) 

0,4231545 ++−= txxxxxcx ,  (1e) 

where ( ) ( ) ( ) ( ) ( ) ( )  15

54321: =
T

txtxtxtxtxtx  is the state vector, 

( ) ( ) ( ) ( ) ( )  14

4321: =
T

tututututu  is the system control,  Txxxxx 5040302010  is the 

initial value, and 4321 ,,, cccc  are the parameters of the system (1), with 01 c  and 04 c . In 

case of 25.0,20,002.0,2 4321 ==== cccc , and ( ) ,0=tu  the above system is a well-known laser 

dynamic system [8-9], and chaos will occur in such a system. 

 

The global exponential stabilization of system (1) and its exponential convergence rate are 

respectively defined as follows. 

Definition 1. The system (1) is said to be globally exponentially stable if there exist a control u 

and positive number   satisfying 

( ) ( ) 0,0  − textx t . 

At the same time, the parameter   is called the exponential convergence rate. 

The purpose of this paper is to design a simple linear control such that the global exponential 

stabilization of the system (1) can be achieved. In addition, we also explore the exponential 

convergence rate of this stable system at the same time. 

In the following, we propose the main result for the globally exponential stabilization of 

nonlinear system (1) by using differential and integral inequalities. 

Theorem 1. The nonlinear system (1) realizes the globally exponential stabilization under the 

linear control  
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At the same time, the guaranteed exponential convergence rate is given by  

 
4: c= . (3) 

Proof. Let 

 ( )( )
( ) ( ) ( ) ( )

2222
:

2

4

2

3

2

2

2

1 txtxtxtx
txW +++= . (4) 

The time derivative of ( )( )txW  along the trajectories of the closed-loop systems (1) with (2) is 

given by 
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.0,2 4 −= tWc  

Thus, one has 

  .0,02 444 222
=+ tWe

dt

d
WVeWe

tctctc   

It follows 

( )( )  ( )( ) ( )( ) .0,000
0

2

0

2 44 =−=  tdxWtxWedtxWe
d

d
t

tc

t

c 


  (5) 

From (4) and (5), it results 

( ) ( )( ) ( )( ) ( ) .0,00
2222

44 ==
−−

txexWetxWtx
tctc  

As a consequence, we conclude that 

( ) ( ) .0,04 
−

txetx
tc

 

This completes the proof.   

 

NUMERICAL SIMULATIONS 

Consider the nonlinear system of (1) with  

 25.0,20,002.0,2 4321 ==== cccc . (6) 

From (2) with (6), it can be readily obtained that 

 
11 25.9 xu −= ,  (7a) 
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22 25.9 xu −= ,  (7b) 

 33 25.10 xu −= ,  (7c) 

 .25.10 44 xu −=   (7d) 

As a consequence, by Theorem 1, we conclude that the nonlinear system (1) with (6) is globally 

exponentially stable under the linear control of (7). At the same time, from (3), the guaranteed 

exponential convergence rate is given by 25.0= . The typical state trajectories of the 

uncontrolled system and the feedback-controlled system are shown in Figure 1 and Figure 2, 

respectively. Meanwhile, the control signals and the hardware implementation diagram of the 

controller of (7) are shown in Figure 3 and Figure 4, respectively. 

 

CONCLUSION 

In this paper, the globally exponential stabilization of a nonlinear system has been studied. 

Based on the methodology of differential and integral inequalities, a linear controller has been 

designed to ensure that the closed-loop control system achieves the goal of global exponential 

stability. The controller design for a more generalized nonlinear system will be one of the future 

research directions of our team. 
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Figure 1: Typical state trajectories of the system (1) with (6) and .0=u  

 

Figure 2: Typical state trajectories of the feedback-controlled system of (1) with (6) and (7). 
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Figure 3: Control signals of ( )tu . 
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Figure 4: The hardware implementation diagram of the controller of (7), where 

,17531 ==== kRRRR  ,25.942 == kRR  and .25.1086 == kRR  
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